Physics of Classical Electromagnetism (eBook)

eBook Download: PDF
2007 | 2007
XII, 326 Seiten
Springer New York (Verlag)
978-0-387-68018-7 (ISBN)

Lese- und Medienproben

Physics of Classical Electromagnetism -  Minoru Fujimoto
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is unique because unlike others on the subject that focus on mathematical arguments, this volume emphasizes the original field concept, aiming at objectives in modern information technology. Written primarily for undergraduate students of physics and engineering, this book serves as a useful reference for graduate students and researchers too. With concise introductory arguments for the physics of electromagnetism, this book covers basic topics including the nature of space-time-dependent radiations in modern applications.



Minoru Fujimoto is retired Professor of Physics at the University of Guelph, Ontario, Canada.
The Maxwell theory of electromagnetism was well established in the latter ni- teenth century, when H. R. Hertz demonstrated the electromagnetic wave. The theory laid the foundation for physical optics, from which the quantum concept emerged for microscopic physics. Einstein realized that the speed of electrom- netic propagation is a universal constant, and thereby recognized the Maxwell equations to compose a fundamental law in all inertial systems of reference. On the other hand, the pressing demand for ef?cient radar systems during WWII accelerated studies on guided waves, resulting in today's advanced telecommu- cation technology, in addition to a new radio- and microwave spectroscopy. The studies were further extended to optical frequencies, and laser electronics and - phisticated semi-conducting devices are now familiar in daily life. Owing to these advances, our knowledge of electromagnetic radiation has been signi?cantly - graded beyond plane waves in free space. Nevertheless, in the learning process the basic theory remains founded upon early empirical rules, and the traditional teaching should therefore be modernized according to priorities in the modern era. In spite of the fact that there are many books available on this well-established theme, I was motivated to write this book, reviewing the laws in terms of cont- porary knowledge in order to deal with modern applications. Here I followed two basic guidelines. First, I considered electronic charge and spin as empirical in the description of electromagnetism.

Minoru Fujimoto is retired Professor of Physics at the University of Guelph, Ontario, Canada.

Contents 5
Preface 10
Steady Electric Currents 12
1.1. Introduction 12
1.2. Standards for Electric Voltages and Current 13
1.3. Ohm Law's and Heat Energy 15
1.4. The Kirchhoff Theorem 19
Electrostatics 24
Electrostatic Fields 25
2.1. Static Charges and Their Interactions 25
2.2. A Transient Current and Static Charges 26
2.3. Uniform Electric Field in a Parallel-Plate Condenser 29
2.4. Parallel and Series Connections of Capacitors 35
2.5. Insulating Materials 36
Exercises 39
The Gauss Theorem 40
3.1. A Spherical Capacitor 40
3.2. A Cylindrical Capacitor 43
3.3. The Gauss Theorem 44
3.4. Boundary Conditions 49
The Laplace-Poisson Equations 53
4.1. The Electrostatic Potential 53
4.2. The Gauss Theorem in Differential Form 54
4.3. Curvilinear Coordinates (1) 56
4.4. The Laplace-Poisson Equations 59
4.5. Simple Examples 63
4.6. The Coulomb Potential 65
4.7. Point Charges and the Superposition Principle 68
The Legendre Expansion of Potentials 74
5.1. The Laplace Equation in Spherical Coordinates 74
5.2. Series Expansion of the Coulomb Potential 76
5.3. LegendreÌs Polynomials 78
5.4. A Conducting Sphere in a Uniform Field 79
5.5. A Dielectric Sphere in a Uniform Field 81
5.6. A Point Charge Near a Grounded Conducting Sphere 82
5.7. A Simple Quadrupole 85
5.8. Associated Legendre Polynomials 86
5.9. Multipole Potentials 89
Electromagnetism 93
The Amp`ere Law 94
6.1. Introduction 94
6.2. The Amp`ere Law 95
6.3. A Long Solenoid 98
6.4. Stokes' Theorem 100
6.5. Curvilinear Coordinates (2) 103
6.6. The Amp`ere Law in Differential Form 105
6.7. The Rowland Experiment 107
Magnetic Induction 110
7.1. Laws of Magnetic Induction 110
7.2. Differential Law of Induction and the Dynamic Electric Field 113
7.3. Magnetic Moments 117
Scalar and Vector Potentials 121
8.1. Magnets 121
8.2. Pohl's Magnetic Potentiometer 123
8.3. Scalar Potentials of Magnets 125
8.4. Vector Potentials 128
8.5. Examples of Steady Magnetic Fields 130
8.6. Vector and Scalar Potentials of a Magnetic Moment 135
8.7. Magnetism of a Bohr's Atom 137
Inductances and Magnetic Energies 141
9.1. Inductances 141
9.2. Self- and Mutual Inductances 144
9.3. Mutual Interaction Force Between Currents 147
9.4. Examples of Mutual Induction 148
Time-Dependent Currents 151
10.1. Continuity of Charge and Current 151
10.2. Alternating Currents 152
10.3. Impedances 154
10.4. Complex Vector Diagrams 156
10.5. Resonances 158
10.6. Four-Terminal Networks 161
Electromagnetic Waves 168
Transmission Lines 169
11.1. Self-Sustained Oscillators 169
11.2. Transmission Lines 171
11.3. Fourier Transforms 173
11.4. Reflection and Standing Waves 175
11.5. The Smith Chart 178
The Maxwell Equations 180
12.1. The Maxwell Equations 180
12.2. Electromagnetic Energy and the Poynting Theorem 183
12.3. Vector and Scalar Potentials 184
12.4. Retarded Potentials 185
12.5. Multipole Expansion 188
Electromagnetic Radiation 192
13.1. Dipole Antenna 192
13.2. Electric Dipole Radiation 192
13.3. The Hertz Vector 196
13.4. A Half-Wave Antenna 200
13.5. A Loop Antenna 201
13.6. Plane Waves in Free Space 203
The Special Theory of Relativity 207
14.1. Newton's Laws of Mechanics 207
14.2. The Michelson-Morley Experiment 208
14.3. The Lorentz Transformation 210
14.4. Velocity and Acceleration in Four-Dimensional Space 212
14.5. Relativistic Equation of Motion 214
14.6. The Electromagnetic Field in Four-Dimensional Space 216
Waves and Boundary Problems 222
15.1. Skin Depths 222
15.2. Plane Electromagnetic Waves in a Conducting Medium 224
15.3. Boundary Conditions for Propagating Waves 226
15.4. Reflection from a Conducting Boundary 227
15.5. Dielectric Boundaries 229
15.6. The Fresnel Formula 231
Guided Waves 234
16.1. Propagation Between Parallel Conducting Plates 234
16.2. Uniform Waveguides 237
16.3. Examples of Waveguides 241
Coherent Waves and Radiation Quanta 248
Waveguide Transmission 249
17.1. Orthogonality Relations of Waveguide Modes 249
17.2. Impedances 251
17.3. Power Transmission Through a Waveguide 255
17.4. Multiple Reflections in a Waveguide 256
Resonant Cavities 259
18.1. SlaterÌs Theory of Normal Modes 259
18.2. The Maxwell Equations in a Cavity 262
18.3. Free and Damped Oscillations 264
18.4. Input Impedance of a Cavity 266
18.5. Example of a Resonant Cavity 269
18.6. Measurements of a Cavity Resonance 271
Electronic Excitation of Cavity Oscillations 274
19.1. Electronic Admittance 274
19.2. A Klystron Cavity 276
19.3. Velocity Modulation 280
19.4. A Reflex Oscillator 282
Dielectric and Magnetic Responses in Resonant Electromagnetic Fields 286
20.1. Introduction 286
20.2. The Kramers-Krönig Formula 287
20.3. Dielectric Relaxation 289
20.4. Magnetic Resonance 294
20.5. The Bloch Theory 296
20.6. Magnetic Susceptibility Measured by Resonance Experiments 298
Laser Oscillations, Phase Coherence, and Photons 300
21.1. Optical Resonators 300
21.2. Quantum Transitions 302
21.3. Inverted Population and the Negative Temperature 305
21.4. Ammonium Maser 306
21.5. Coherent Light Emission from a Gas Laser 307
21.6. Phase Coherence and Radiation Quanta 308
Appendix 310
Mathematical Notes 311
A.1. Orthogonal Vector Space 311
A.2. Orthogonality of Legendre's Polynomials 312
A.3. Associated Legendre Polynomials 314
A.4. Fourier Expansion and Wave Equations 316
A.5. Bessel's Functions 318
References 321
Index 322

Erscheint lt. Verlag 6.9.2007
Zusatzinfo XII, 326 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Optik
Technik Elektrotechnik / Energietechnik
Schlagworte electric current • electrodynamics • electromagnetic wave • Electrostatics • Energie • lasers • Magnetic field • magnetism • Microwaves • Optics • optoelectronics • Potential • Relativity • Wave phenomena • Waves
ISBN-10 0-387-68018-7 / 0387680187
ISBN-13 978-0-387-68018-7 / 9780387680187
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99