Advanced Materials for Thermal Management of Electronic Packaging (eBook)

eBook Download: PDF
2011 | 1. Auflage
XXII, 618 Seiten
Springer New York (Verlag)
978-1-4419-7759-5 (ISBN)

Lese- und Medienproben

Advanced Materials for Thermal Management of Electronic Packaging -  Xingcun Colin Tong
Systemvoraussetzungen
255,73 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.
The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.

Advanced Materials for Thermal Management of Electronic Packaging 3
Preface 7
Contents 9
Abbreviations 17
Chapter 1: Thermal Management Fundamentals and Design Guides in Electronic Packaging 23
Rationale of Thermal Management 23
Heat Sources and Thermal Effects on Integrated Circuit Operation 25
Power Density 25
Joule Heating 26
Thermal Failure Induced by Different Coefficient of Thermal Expansions 27
Thermal Failure Rates 28
Thermal Management Challenges and Common Concerns 28
Overall Picture of Thermal Management in Different Packaging Levels 31
Chip Level Packaging Thermal Management 33
Board Level Packaging Thermal Management 34
System-Level Packaging Thermal Management 37
Thermal Management Solutions 38
Hardware Solutions 39
Software Solutions and Software-Based Dynamic Thermal Management 44
Optimal Thermal Design of a Package 47
Fundamentals of Heat Transfer and Thermal Calculation in Electronic Packaging 49
Conduction 50
Convection 53
Radiation 54
Multimode Heat Transfer in Electronic Packaging 56
Microscale Heat Transfer 58
Design for Advanced Thermal Management of Electronic Packaging 60
Thermal Design Guidelines 61
Thermal Modeling and Simulation 63
Principles of Thermal Modeling 64
General Approaches 65
Example Methods for Thermal Modeling of Electronic Packaging 66
Chip Modeling 67
Substrate Modeling 67
Interfaces 68
Experimental Verification 68
Materials Selection for Advanced Thermal Management 69
Interface Joining Materials 70
Bulk Materials for Heat Spreading and Dissipating 71
Materials and Components Integration 72
Higher Conductivity Materials 72
Increasing Wetting or Bonding Forces 73
Decreasing Interface Thickness 73
Elimination of the Number of Interfaces 73
Environmental Compliance of Thermal Management Materials 74
RoHS 75
WEEE 76
Summary 77
References 79
Chapter 2: Characterization Methodologies of Thermal Management Materials 81
Thermal Properties and Measurement Techniques 81
Thermal Conductivity and Diffusivity 81
Axial Flow Methods 85
Absolute Axial Heat Flow 85
Comparative Cut Bar (ASTM E1225 Test Method) 85
Guarded or Unguarded Heat Flow Meter Method (ASTM C518, E1530 Test Methods) 86
Guarded Hot Plate Method (ASTM C 177 Test Method) 86
Hot Wire Method (ASTM C1113 Test Method) 87
Laser Flash Method 88
Coefficient of Thermal Expansion 90
Specific Heat Capacity 91
Thermal Shock Resistance 92
Thermal Characterization of Micro/Nanomaterials 94
The 3omega Method 95
2-D Thin Films 95
1-D Nanomaterials 99
Thermoreflectance Approach 99
Electrical Properties and Measurement Techniques 102
Electrical Conductivity and Resistivity 102
Eddy Current Testing 103
Two-Point Technique 103
Four-Point Technique 104
Van der Pauw Technique 104
Permittivity and Its Characterization 105
Thermomechanical Characterization 106
Characterization Techniques of Thermally Induced Stress and Strain 107
Micromechanical Tester 108
Moiré Interferometry 109
Speckle Techniques 111
Fundamental Equations of Deformable Bodies 112
Constitutive Behavior 113
Thermomechanical Analysis 116
Plain Stress and Plain Strain 117
Beams and Laminate Assemblies 117
Bimaterial Assembly 118
Trimaterial Assembly 121
Numerical Method 121
Thermomechanical Failures 122
Static Failure 123
Failure of Fracture Mechanics 123
Fatigue Failure 124
Analytical Techniques for Materials Characterization 126
Optical Microscopy 126
X-Ray Diffraction 128
Single-Crystal Method 129
Scanning Electron Microscopy 131
Transmission Electron Microscopy 132
Scanning Acoustic Microscopy 134
Atomic Force Microscopy 136
Contact Mode 137
Lateral Force Microscopy 137
Noncontact Mode 137
Dynamic Force/Intermittant-Contact/``Tapping Mode´´ AFM 137
Force Modulation 138
Phase Imaging 138
Surface Finish Requirement and Contact Interface Compatibility 139
Corrosion and Oxidation Protection 139
Noble Finish Selection 139
Gold (Au) 140
Palladium (Pd) 140
Noble Metal Alloys 140
Nonnoble Finishes 141
Tin (Sn) 141
Silver (Ag) 142
Nickel (Ni) 142
Solderability of Surface Finishes 143
Effects of Mating Cycles and Operating Environments on Contact Surface Finishes 144
Galvanic Corrosion and Contact Interface Compatibility 145
Reliability Analysis and Environmental Performance Evaluation 145
Failure Modes and Mechanisms 146
Failure Theories 146
Chemical Failure Mechanisms 146
Physical Failure Mechanisms 147
Thermomechanical Failure Mechanisms 147
Reliability Qualifications 148
Thermal Cycling and Thermal Shock 148
Steady-State Temperature/Humidity Bias Life Test 149
Mechanical Vibration 149
References 150
Chapter 3: Electronic Packaging Materials and Their Functions in Thermal Managements 152
Materials Selection for Electronic Packaging 152
Metallic Materials 155
Monolithic Metals 155
Metallic Composites 157
Tungsten/Copper 157
Molybdenum/Copper 158
Silicon/Aluminum, Beryllium/Aluminum and Beryllium/Beryllium Oxide 159
Metal Foam and Metallic Cellular Materials 160
Ceramics and Semiconductors 161
Electronic Glasses 164
Polymers 166
Thermoplastics 167
Thermosets 171
Elastomers 174
Multimaterial Laminates 174
Multilayer Materials 175
Metallic Laminate Materials 177
Printed Circuit Board Materials 178
Interface Materials 181
Low Thermal Conductivity Materials 184
Advanced Thermally Conductive Materials 185
References 188
Chapter 4: Monolithic Carbonaceous Materials and Carbon Matrix Composites 189
Introduction 189
Natural and Industrial Graphite 193
Pyrolytic Graphite 196
Carbon-Graphite Foams 198
Fabrication Process 199
Thermal Conductivity and Heat Transformation 201
Thermally Conductive Carbon Fibers 203
Diamond 208
Carbon Nanotubes 212
Graphene 216
Carbon-Carbon Composites 217
Summary 219
References 219
Chapter 5: Thermally Conductive Polymer Matrix Composites 221
Introduction 221
Polymer Matrix Types 222
Reinforcements of Conductive Polymer Composites 227
Design and Modeling of Conductive Polymer Composites 229
Theoretical Modeling 231
Computational Modeling 235
CUBIT: A Computational Mesh Generator 235
Calore: A Finite Element Thermal Analysis Program 236
Code Validation and Modeling Strategy 236
Modeling Filler in the Attached Phase 237
Effect of Contact Resistance 237
Percolation Theory 237
General Fabrication and Manufacturing Processes of Polymer Matrix Composites 239
Typical Applications for Thermal Management 242
Polymer-Carbon Composites 243
Polymer-Metal Composites 244
Polymer-Ceramic Composites 245
Polymer Matrix Nanocomposites 247
Summary 251
References 251
Chapter 6: High Thermal Conductivity Metal Matrix Composites 253
Introduction 253
Processing of Metal Matrix Composites 255
Solid State Methods 255
Liquid State Methods 259
In Situ Fabrication Methods 262
Codeposition 263
Aluminum Matrix Composites 265
Aluminum-Boron 265
Aluminum-Graphite 266
Aluminum-Diamond 267
Aluminum-Silicon Carbide 268
Aluminum-Silicon 272
Copper Matrix Composites 273
Copper-Graphite 274
Copper-Carbon Nanofiber 277
Copper-Silicon Carbide and Copper-Diamond 278
Other Metal Matrix Composites 286
Beryllium Composites 287
Silver-Diamond 290
Low-CTE Composite Solder 292
Summary 294
References 295
Chapter 7: Thermally Conductive Ceramic Matrix Composites 297
Introduction 298
State of the Art in Processing of SiC Matrix Ceramic Matrix Composites 299
SiC-Diamond Composites 303
SiC-Carbon Composites 307
Reaction-Bonded SiC Composites 310
Aluminum-Toughened SiC 313
Ceramic Nanocomposites 314
Ceramic Matrix Composite Thermal Protection System 319
Summary 322
References 323
Chapter 8: Thermal Interface Materials in Electronic Packaging 325
Thermal Joint Conductance and Selection of Thermal Interface Materials 326
Thermal Joint Conductance 326
Criteria for Selection of Thermal Interface Materials 329
Thermal Conductivity of the Material 330
Electrical Conductivity of the Material 331
Spreading Characteristics of the Material 332
Long-Term Stability and Reliability of the Material 332
Ease of Application 333
Metallic Thermal Interface Materials 334
Reflow Solders and Active Bond Process 335
Nonreflow Solders and LMAs 340
Composite Solders and Hybrid Metallic Thermal Interface Materials 343
Gold-Gold Interconnection 352
Organic Thermal Interface Materials 358
Thermally Conductive Elastomer Materials 359
Thermal Grease and Compound 362
Phase Change Materials 363
Polymer Solder Hybrid Materials 367
Graphite-Based Thermal Interface Material 371
Advanced Thermal Interface Materials 372
Gelvet and Fiber-Reinforced Thermal Interface Materials 372
Nanotechnology Based Thermal Interface Materials 378
Carbon Nanotube Adhesive 378
Graphene-Based Thermal Interface Materials 380
Thermal Interface Materials Selection and Application 382
Commercial TIMs Selection and Application 383
Future Directions 387
Summary 388
References 390
Chapter 9: Materials and Design for Advanced Heat Spreader and Air Cooling Heat Sinks 392
Overview of Air Cooling 393
Passive Air Cooling 393
Active Air Cooling 394
Spreading and Constriction Resistance 397
Type of Heat Spreaders and Their Materials Selection 403
Dielectric Heat Spreader Materials 404
Metallic and Composite Heat Spreader Materials 407
Graphite Heat Spreader 408
Advanced Heat Spreaders 411
Air Cooling Heat Sink 413
Type of Air Flow Heat Sinks 413
Heat Sink Design Constraints and Design Parameters 415
Heat Sink Materials Selection and Fabrication Process 423
Aluminum Extrusions 423
Bonded Fin Heat Sinks 426
Folded Fin 426
Castings 426
Material Thermal Conductivity 429
Nanostructure Enhanced Heat Sink and Complex Spreader Sink 431
Summary 437
References 439
Chapter 10: Liquid Cooling Devices and Their Materials Selection 440
Introduction 440
Direct Liquid Cooling 442
Immersion Cooling 443
Liquid Jet Impingement 450
Concept of Free-Surface and Submerged Jet Impingement 450
Convective Jet Impingement 452
Spray Cooling 454
Indirect Liquid Cooling 458
Heat Pipe Cooling 461
Fundamental Principles of Heat Pipe Cooling 463
Heat Pipe Design and Type of Heat Pipes 464
Limitations on Heat Transport Capacity 469
Applications of Heat Pipe for Electronic Cooling 471
Refrigeration Cooling 475
High-Flux Cooling with Phase-Change Heat Transfer 481
Enhancement of Pool Boiling 482
Enhancement of Forced-Convection 485
Embedded Droplet Impingement for Integrated Cooling of Electronics 487
Summary 488
References 492
Chapter 11: Thermoelectric Cooling Through Thermoelectric Materials 495
Introduction 495
Thermoelectric Effects 499
Seebeck Effect 499
Peltier Effect 500
Thomson Effect 502
Application of Thermoelectric Effects to Thermoelectric Cooling 503
Design and Architecture of Thermoelectric Cooling Devices 505
Design Methodology 505
Multistage Architecture 510
Thermoelectric Materials and Future Development Trends 513
Fermi Energy in Thermoelectric Materials 514
Optimization Criteria of the Thermoelectric Materials 515
Bulk Thermoelectric Materials 520
Established Materials: Bismuth Chalcogenides 521
Skutterudite Thermoelectrics 525
Oxides 528
Flexible Graphite 529
Low-Dimensional Thermoelectric Materials 530
Thermoelectric Nanocomposites 534
Increasing the Mobility 537
Energy Filtering 538
Resonant Levels to Enhance the Density of States 538
Reducing the Bipolar Effect 539
Reducing the Electronic Thermal Conductivity 539
Summary 540
References 541
Chapter 12: Development and Application of Advanced Thermal Management Materials 544
Materials Development Routine and Methodology 544
Establishing Application Target and Materials Requirements 545
Materials Selection with Optimal Balance of Cost and Performance 549
Thermal Modeling and Design-In Methodology 550
Modeling Techniques 550
Thermal Modeling 551
Reliability Modeling 554
Design-In Methodology 555
Prototype Fabrication and Experimental Validation 555
Production Layout and Quality Assurance 557
Smart Composites and Multifunctional Materials for Thermal Management 561
Thermal Management Materials with Enhanced Electromagnetic Interference Shielding and Absorbing Performance 563
Minimizing EMI from Heat Sinks 563
Combination of Board Level Shielding and Heat Dissipation 564
Thermally Conductive EMI Absorbing Materials 566
Thermally Conductive Metalized Plastic Housing for EMI Shielding 568
Thermal Management Application in Computer Design 569
Design Baseline for Power Management and Performance Optimization 570
Thermal Design Targets 571
Process Scaling 571
Circuit Design 571
Smart Voltage Regulation 572
Packaging-Level Solutions 572
System-Level Solutions 576
Thermal Management Application in Photonic LED Packaging 578
Thermal Characterization of LED Systems 579
Design Guideline for LEDs with Efficient Thermal Dissipation 582
Efficiency of Thermal Transfer 583
High-Efficiency Circuit Boards (PCBs) 583
Thermal Dissipation from Enclosures with Proper Lamp Housing Design and Mounting of the LED Array 584
Circuit Design 585
External Heat Sinks and Forced Air Convection 586
Thermal Management Solutions and Challenges of LEDs 587
Thermal Management Application in Sustainable Energy Generation 588
Thermal Management of Batteries 588
Thermal Management of Fuel Cells 591
Thermal Management of Solar Cell Packaging 593
Perspective and Future Trends 594
Electrothermal and Multiphysics Codesign and Software Solutions 595
Progress and Future Trends of High Heat Flux Thermal Management 599
Thermal Challenges for Next-Generation Military, Automotive, and Harsh-Environment Electronic Systems 603
Summary 605
References 608
Appendix: Standards and Specifications for Evaluation of Thermal Management in Electronic Industry 611
A. Standards for Thermal Analysis 611
B. Standards for Life and Reliability Evaluation 614
C. Standards for Flammability and Toxicity Testing 619
Index 623

Erscheint lt. Verlag 5.1.2011
Reihe/Serie Springer Series in Advanced Microelectronics
Zusatzinfo XXII, 618 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte electronic packaging design • electronic packaging materials • electronics cooling devices • Thermally conductive materials • Thermal managing design guide • Thermal managing fundamentals • thermal materials applications • thermal materials development book • Thermoelectric materials
ISBN-10 1-4419-7759-7 / 1441977597
ISBN-13 978-1-4419-7759-5 / 9781441977595
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 22,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99