Genomics, Proteomics, and the Nervous System (eBook)

James D Clelland (Herausgeber)

eBook Download: PDF
2010 | 2011
XVI, 592 Seiten
Springer New York (Verlag)
978-1-4419-7197-5 (ISBN)

Lese- und Medienproben

Genomics, Proteomics, and the Nervous System -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This newest volume of Advances in Neurobiology discusses the utilization of genomic and proteomic technologies, to address facets of neurobiology including development and epigenetic regulation, functions in learning and memory, and changes associated with neurological and psychiatric disorders.

James D Clelland, PhD is a Research Scientist at the Nathan Kline Institute for Psychiatric Research, and an Assistant Professor at New York University School of Medicine, in the Department of Psychiatry. His research interests include understanding the biochemical and molecular changes that underlie susceptibility to, and the etiology of, psychiatric illnesses.
This newest volume of Advances in Neurobiology discusses the utilization of genomic and proteomic technologies, to address facets of neurobiology including development and epigenetic regulation, functions in learning and memory, and changes associated with neurological and psychiatric disorders.

James D Clelland, PhD is a Research Scientist at the Nathan Kline Institute for Psychiatric Research, and an Assistant Professor at New York University School of Medicine, in the Department of Psychiatry. His research interests include understanding the biochemical and molecular changes that underlie susceptibility to, and the etiology of, psychiatric illnesses.

Genomics, Proteomics,and the Nervous System 3
Preface 5
Contents 7
Contributors 11
Part I:Development 17
The Genomics of Turner Syndrome and Sex-Biased Neuropsychiatric Disorders 18
1 Turner Syndrome 18
1.1 Genetic Mechanisms Underlying TS Endophenotypes 20
1.2 Problems with Investigating the Genomics of TS 21
1.3 Identification of Candidate Genes for TS Endophenotypes 22
1.3.1 Human Studies 22
1.3.2 Mouse Studies 24
2 The Genomics of Sex-Biased Neuropsychiatric Disorders 26
3 Insights into Sex-Biased Neuropsychiatric Disorders from Turner Syndrome 28
4 Conclusion 29
References 30
Mental Retardation and Human Chromosome 21 Gene Overdosage: From Functional Genomics and Molecular Mechanisms Towards Prevention and Treatment of the Neuropathogenesis of Down Syndrome 36
1 Mental Retardation in Down Syndrome: An Invalidating Neuropathological Aspect with Hard Impact on Public Health 38
2 Mental Retardation in Down Syndrome: A Consequence of Developmental and Functional Brain Alterations 39
3 Mental Retardation in Down Syndrome: A Consequence of Chromosome 21 Gene Overdosage 41
3.1 Chromosomal Imbalance Effects on Mental Retardation 41
3.1.1 Dosage-Sensitive Gene Hypothesis 42
3.1.2 Amplified Developmental Instability Hypothesis 43
3.2 Gene Dosage Imbalance in Down Syndrome Determine Dysregulation of HSA21 Gene Expression 43
3.2.1 Primary and Secondary Gene Effects 43
3.2.2 Transcriptional Variation as a Consequence of Trisomy 21 44
3.2.3 Proteomic Variation as a Consequence of Trisomy 21 48
4 Modelling Neuronal Alterations and Mental Retardation in Mouse Models of Down Syndrome 51
4.1 Trisomic Mouse Models and Candidate Chromosomal Regions for Mental Retardation in Down Syndrome 52
4.1.1 Ts16 Mice: Trisomic for Most Part of HSA21 with Three Copies of Complete MMU16 53
4.1.2 Segmental Ts65Dn Mice: Trisomic for Most HSA21 Genes Conserved in Distal End of MMU16 53
4.1.3 Segmental Ts1Cje Mice: Trisomic for Three-Quarters of Genes of Ts65Dn, Including DSCR 55
4.1.4 Segmental Ms1Ts65 Mice: Trisomic for Non-DSCR Genes of Ts65Dn and Missing from Ts1Cje 55
4.1.5 Segmental Ts1Rhr and Ms1Rhr Mice: Trisomic and Monosomic for DSCR 56
4.1.6 Segmental Ts2Cje Mice: Trisomic from APP to the Telomere 56
4.1.7 Segmental Dp(16)1Yu Mice: Trisomic from LIP1 to ZNF295 57
4.1.8 Transchromosomal ES(#21) Mice: Trisomic for a Large Part of HSA21 57
4.1.9 Transchromosomal TC1 Mice: Trisomic for Almost HSA21 (92% of HSA21 Genes) 58
4.1.10 Segmental Transgenic Mouse In Vivo Library of Human DSCR 58
5 Genetic Dissection of the Role of the Down Syndrome Critical Region in Mental Retardation 59
6 Transgenic Mouse Models of Down Syndrome 60
7 Candidate Genes and Genotype/Phenotype Correlation for Mental Retardation in Down Syndrome 61
7.1 Cu-Zn Superoxide Dismutase (SOD1) Gene 61
7.2 Amyloid Precursor Protein (APP) Gene 63
7.3 v-ets Erythroblastosis Virus E26 (ETS2) Gene 64
7.4 S100 Calcium Binding Protein B (S100B) Gene 64
7.5 Dual-Specificity Tyrosine Y Kinase 1 Subunit A (DYRK1A) Gene 65
7.6 Single-Minded (SIM2) Gene 66
7.7 Regulator of the Calcineurin (RCAN1) Gene 67
7.8 DOPEY2 Gene 68
7.9 Potassium Inwardly Rectifying Channel (KCNJ6) Gene 69
7.10 Tetratricopeptide Down Syndrome (TPRD) Gene 70
7.11 Down Syndrome Cell Adhesion Molecule (DSCAM) Gene 71
7.12 Synaptoganin 1 (SYNJ1) Gene 71
7.13 Intersectin 1 (ITSN1) Gene 72
7.14 Contribution of MicroRNAs in Down Syndrome Mental Retardation 73
8 Potential Molecular Pathways and Mechanisms Involved in Mental Retardation of Down Syndrome 74
8.1 Molecular and Cellular Mechanisms Leading to Mental Retardation in Down Syndrome 74
8.2 Molecular Pathways Contributing to Mental Retardation in Down Syndrome 76
9 Potential Directions for Mental Retardation Therapeutics in Down Syndrome 79
10 Conclusion and Perspectives 81
References 82
Epigenetic Programming of Stress Responses and Trans-Generational Inheritance Through Natural Variations in Maternal Care 102
1 Introduction: Environmental Influences and the Origins of Adult Health and Disease 103
2 Maternal Care in the Rat and HPA and Behavioral Responses to Stress in Adulthood 104
3 Epigenetic Gene Regulation: Heritable Changes in Gene Expression Potential 106
3.1 Chromatin Structure 106
3.2 DNA Methylation 107
3.3 DNA Demethylation 108
4 DNA Methylation and the Maternal Programming of Stress Responses 109
4.1 Epigenetic Programming by Maternal Care Is Reversible in the Adult Animal 110
4.2 Mechanisms Leading from Maternal Care to Chromatin Plasticity 112
5 Trans-Generational Inheritance of Epigenetic Programming by Maternal Behavior 113
5.1 Evidence for Epigenetic Mechanisms Linking Maternal Care of the Mother with Maternal Behavior in the Female Offspring 114
5.2 Environmental Influences and the Mother–Offspring Dyad 115
6 Epigenetic Programming Early in Life and Inter-Individual Differences in Human Behavior and Health 117
7 Concluding Remarks 118
References 119
Prenatal Viral Infection in Mouse: An Animal Model of Schizophrenia 128
1 An Introduction to Prenatal Viral Infectionand Schizophrenia 128
2 Mouse Brain Development 130
3 Impact of Prenatal Viral Infection on Brain Development 131
3.1 Brain Structural Abnormalities Following PrenatalViral Infection 131
3.2 Brain Gene Expression Abnormalities FollowingPrenatal Viral Infection 133
3.3 Altered Protein Expression in Offspring Following Prenatal Viral Infection 136
3.4 Brain Neurotransmitters are Altered in Exposed Offspring Following Viral Infection at E16 and E18 142
3.5 Abnormal Behavior of Offspring Following PrenatalViral Infection 143
4 Conclusions 143
References 146
Proteomic Actions of Growth Hormone in the Nervous System 152
1 Introduction 153
2 GH and Neural Action 154
3 GH and Neural Protein Synthesis 157
4 GH and Neural Growth and Differentiation 158
5 GH and Neuroprotection 161
6 GH and Neurotransmission 163
7 GH and Neuroendocrine Function 163
8 GH and Behavior 164
8.1 Summary 164
References 165
Part II:Learning and Memory 174
Gene Expression and Signal Transduction Cascades Mediating Estrogen Effectson Memory 175
1 Introduction 175
2 Synaptic Plasticity: A Memory Model 176
2.1 Long-Term Potentiation 177
3 Genomic Processes 178
3.1 Estrogen Receptors 178
3.1.1 Estrogen Receptor Localization 178
4 Rapid Signaling Cascades 179
4.1 Calcium Regulation 179
4.2 Alteration in Kinase and Phosphatase Activity 180
5 Interaction of Rapid Signaling Cascades and Transcription 180
5.1 Trophic and Neuroprotective Influences 182
5.2 Age-Related Changes in Estrogen Pathways 183
6 Conclusion 183
References 184
Diagnostic Genome Profiling in Mental Retardation 191
1 Introduction 191
2 Conventional Cytogenetics 193
3 Molecular Cytogenetics 193
3.1 Fluorescence In Situ Hybridization 193
3.2 Molecular Karyotyping 194
3.2.1 Clone-Based Genomic Microarrays 195
3.2.2 High-Density Oligonucleotide Microarrays 195
4 High Throughput Screening Technologies in Mental Retardation 197
4.1 Identification of Genes in Known Mental Retardation Syndromes 197
4.2 Targeted Microarray Applications 198
4.3 Genome-Wide Screening for DNA Copy-Number Variation 198
4.3.1 Identification of New Genomic Disorders 199
5 Copy-Number Variants in the General Population 200
6 The Clinical Consequences of Submicroscopic Copy-Number Variants 201
7 Conclusions and Future Prospects 203
References 203
Genomic Imprinting and Sexual Experience-Dependent Learning in the Mouse 209
1 Introduction 210
1.1 Olfaction and Male Reproduction 210
1.2 Genomic Imprinting and Reproduction 211
2 The Effects of Sexual Experience on Male Behaviour 212
2.1 Behavioural Responses to Sexual Experience 212
2.1.1 Sexual Experience and Reproductive Behaviours 212
2.1.2 Sexual Experience and Non-Reproductive Behaviours 213
2.2 Male Olfactory Learning and Sexual Experience 214
2.2.1 Sexual Experience and the Accessory Olfactory System 215
2.2.2 The Main Olfactory System and Male Reproductive Behaviour 216
2.2.3 Sexual Experience and the Main Olfactory System 217
2.3 Neuroendocrine Responses to Sexual Experience in the Male Brain 218
2.3.1 Sexual Experience and Androgens 218
2.3.2 Sexual Experience and Dopamine 219
2.3.3 Sexual Experience and Nitric Oxide 220
3 Genomic Imprinting 221
3.1 Imprinted Genes in the Brain 222
3.1.1 Imprinted Genes and Brain Development 222
3.1.2 Imprinted Genes and Brain Dysfunction 223
3.2 Evolution of Genomic Imprinting 224
3.2.1 Genomic Imprinting in Mammals 224
3.2.2 Hypotheses for the Evolution of Genomic Imprinting 225
3.2.3 Co-adaptation and Genomic Imprinting 225
4 Paternally Expressed Gene 3 (Peg3) 226
4.1 Peg3, Maternal Behaviour and Offspring Development 226
4.1.1 Maternal Behaviour in Peg3 Mutant Mice 226
4.1.2 Reciprocal Effects in Peg3 Mutant Mothers and Offspring 227
4.2 Peg3 and Male Behaviour 227
4.2.1 Peg3 and Sexual Experience-Dependent Behavioural Changes 228
4.3 Peg3 and Forebrain Plasticity in Response to Sexual Experience 229
4.3.1 Peg3 and the Olfactory Systems 229
4.3.2 Peg3 and the Basal Forebrain 230
4.3.3 Peg3 and Hypothalamic Oxytocin 231
4.3.4 Peg3, Brain Development and Plasticiy 232
5 Conclusion 232
References 233
Proteomic Analysis of the Postsynaptic Density 240
1 Introduction 240
2 Composition of the PSD 242
2.1 Isolation of PSDs 242
2.2 Identification of Proteins in PSD Fractions 242
2.3 Problem of Contaminants 245
2.4 PSD Fractions of Higher Purity 246
2.4.1 N-Lauroyl-Sarcosinate-Derived PSD Fraction 247
2.4.2 Affinity Purification of PSD Fraction Using Magnetic Beads 247
2.5 Validation of PSD Constituents by Biochemical Techniques 249
2.6 Validation of PSD Constituents by Immuno-Electron Microscopy 251
2.7 Quantification 252
2.7.1 Absolute Quantification 252
2.7.2 Relative Quantification 253
3 Catching the Dynamics of the PSD 254
3.1 Studies Monitoring Changes in the PSD Composition 254
3.2 Problem of Postmortem Modifications When Using Whole Animals 255
3.3 Another Experimental Model: PSD fraction from Hippocampal Slices 255
4 Conclusions and Perspective 258
References 259
Part III:Behavior 263
Functional Genomic Dissection of Speechand Language Disorders 264
1 Human Speech and Language 265
2 Disorders of Speech and Language 265
2.1 Developmental Verbal Dyspraxia and the KE Family 266
2.2 Identifying a Gene Underlying Verbal Dyspraxia 267
3 FOX Transcription Factors 268
4 Functional Properties of FOXP2 270
4.1 Alternative Splicing of FOXP2 270
4.2 Functional Consequences of FOXP2 Mutations 273
4.3 R553H Affects Multiple Aspects of FOXP2 Function 274
4.4 R328X Yields an Unstable Non-Functional Product 275
5 Regulatory Networks Associated with Human Speech and Language 276
5.1 High Throughput Analysis of FOXP2 Target Genes 276
5.2 Unbiased Identification of FOXP2 Binding 279
5.3 CNTNAP2 is a Direct Target of FOXP2 281
5.4 FOXP2 and Common Forms of Language Disorder 283
6 Conclusions/Future Perspectives 284
References 284
Studying Human Circadian Behaviour Using Peripheral Cells 290
1 Introduction 290
1.1 Basic Mechanisms of the Circadian Clock 291
1.2 Central and Peripheral Oscillators 292
1.3 Communication Between the SCN and Periphery 294
1.4 Mutations in Clock Genes Affect Human Circadian Behaviour 295
1.5 Interaction Between the Circadian Clock and Mood Disorders 295
2 Measurement of Human Circadian Clocks 296
2.1 Reporter Assays in Peripheral Cells 297
2.2 Cell Type Considerations 297
3 Protocols 300
3.1 Overview of Requirements 300
3.1.1 Ethical Considerations 300
3.1.2 Use of Viruses 300
3.1.3 Storage of Samples 300
3.2 Producing the Reporter Virus 300
3.2.1 Calcium Phosphate Transfection in 293T Cells 301
3.2.2 Optimising Virus Production 302
3.3 Processing of Skin Biopsies 302
3.3.1 Preparation of the Skin 302
3.3.2 Punch 303
3.3.3 Biopsy Processing 303
3.3.4 Splitting Procedure 304
3.3.5 Freezing Procedure 304
3.3.6 Thawing Process 304
3.4 Measurement of Circadian Oscillations from Skin Biopsies 304
3.4.1 Fibroblast Infection 304
3.4.2 Measurement of Circadian Period Length 305
3.4.3 Phase Response Experiments 305
3.4.4 Phase Entrainment Experiments 305
3.4.5 Data Analyses 306
3.5 Troubleshooting 306
4 Discussion 307
4.1 Relationship Between the Circadian Oscillator and Other Pathologies 308
4.2 Ex Vivo Models 308
4.3 Future Potential 308
References 309
Genome-Wide Expression Profilesof Amygdala and Hippocampus in MiceAfter Fear Conditioning 314
1 Introduction 315
2 Fear Conditioning 316
2.1 Fear Conditioning and Amygdala 317
2.2 Fear Conditioning and Hippocampus 317
3 DNA Microarrays 318
4 Gene Expression Profiling in Amygdala and Hippocampus After Fear Conditioning 319
4.1 Methodologies 319
4.1.1 Animals and Fear Conditioning Training 319
4.1.2 Tissue Collection and RNA Extraction 320
4.1.3 Gene Expression Analysis 321
4.1.4 Real-Time RT-PCR and Immunohistochemistry 321
4.2 Distinct Gene Expression Patterns Induced by Fear Conditioning in Amygdala and Hippocampus 322
4.2.1 Fear Conditioning-Triggered Gene Expression Profiles in the Amygdala 332
4.2.2 Fear Conditioning-Triggered Gene Expression Profilesin the Hippocampus 334
5 Summary 335
References 336
Part IV:Psychiatric Disorders 341
Genetic Studies of Schizophrenia 342
1 Introduction 342
2 Genetic Epidemiology: Why Are We Looking for Genes Contributing to Schizophrenia? 344
2.1 Family Studies: Does Risk Aggregate in Relatives? 345
2.2 Twin Studies: How Large Is the Genetic Component of Risk? 346
2.3 Adoption Studies: Is Familial Aggregation Due to Shared Environment? 347
2.4 Transmission Models: How Is the Genetic Risk Transmitted? 348
2.5 Spectrum Disorders: How Broad Is the Range of Psychiatric Illness Transmitted and Who Do We Consider Affected? 350
3 Methods: Where and How Will Such Genes Be Found? 352
3.1 Approaches: What Are Linkage and Association? 352
3.2 Linkage 352
3.3 Linkage Analysis Methods 354
3.4 Association 355
3.5 Association Analysis Methods 355
3.6 Limitations of Linkage and Association 356
3.7 DNA Polymorphisms 357
4 Results: Where Is the Evidence Strongest for Schizophrenia Susceptibility Genes? 358
4.1 Chromosome 22q Linkage Studies 358
4.2 Chromosome 22q Candidate Genes 359
4.2.1 COMT 359
4.3 Chromosome 8p22-p21 Linkage Studies 360
4.4 Chromosome 8p22-p21 Candidate Genes 360
4.4.1 NRG1 360
4.4.2 NRG1 and ERBB4 361
4.5 Chromosome 6p24-p22 Linkage Studies 361
4.6 Chromosome 6p24-p22 Candidate Genes 361
4.6.1 DTNBP1 361
4.6.2 Chromosome 13q14-q32 Linkage Studies 365
4.7 Chromosome 13q14-q32 Candidate Genes 365
4.7.1 G72/DAOA 365
4.7.2 G72/DAOA and DAO 366
4.8 Chromosome 1q32-q42 Linkage Studies 366
4.8.1 1q41-q42 and DISC1 366
4.9 1q23-q32 linkage and RGS4 367
4.10 Other Chromosomal Regions and Genes 368
4.11 Meta-Analyses of Linkage and Association Data 368
4.12 Summary of Current Gene Findings 369
4.13 Genomewide Association Studies 370
4.14 Rare Structural Variation in Schizophrenia 371
5 Discussion 373
6 Conclusions 374
References 375
Proteomics of the Anterior Cingulate Cortex in Schizophrenia 390
1 Introduction 391
2 Cross-Correlation of Altered Proteins in Different Brain Region, Disease and Risperidone-Treated Rats 392
2.1 Human ACC Samples of Schizophrenia Subjects and 2DE-Based Proteomic Analysis 392
2.2 Changes in the ACC GM and WM Proteomes in Schizophrenia Relative to Healthy Controls 393
2.3 Cross-Correlation of Identified Proteins in the ACC WM and GM Proteome in Schizophrenia 394
2.4 Cross-Correlation of Altered Proteins in the ACC in Schizophrenia and Prefrontal Cortex Brodmann Area 9 (PFC BA9) inAlcoholism 396
2.5 Altered Proteins of the Schizophrenia ACC vs. Altered Proteins Due to Neuroleptics in Animal Brain 397
3 Schizophrenia ACC-Specific Protein Changes 398
4 Conclusions 405
References 405
Proteome Effects of Antidepressant Medications 408
1 Introduction 409
2 Antidepressant Treatments 410
2.1 Pharmacotherapy 410
2.2 Other Antidepressant Treatments 410
3 Proteomic Approaches for Aiding the Discovery of Novel Antidepressants 412
4 Proteomic Analyses After Antidepressant Treatments 413
4.1 Antidepressive Agents 413
4.1.1 Proteomics in the Early Days 413
4.1.2 Proteomics in the New Millennium 430
4.1.3 Proteomic Investigations in Cellular Models 435
4.2 Non-Pharmacologic Interventions 435
5 Critical Evaluations of Proteomic Techniques in Studies with Antidepressants 436
5.1 2D Gel Electrophoresis 436
5.2 Gel Matching and Differential Analysis 437
5.3 Protein Identification 438
5.4 Result Confirmation 439
6 Ongoing Studies 439
7 An Integrative Overview of Proteomic Findings 441
References 446
Part V:Neurological Disorders 451
MicroRNAs in Neurodegenerative Disorders 452
1 Introduction 452
2 MicroRNAs (miRNAs): A Widespread Class of Small RNA Molecules that Regulate Protein Expression 453
2.1 Overview of the Mammalian miRNA Expression Pathway (see Fig. 1 and review in Winter, Jung, Keller, Gregory, & Diederichs (2009)
2.2 Mechanisms of miRNA Posttranscriptional Regulation 454
3 Regulatory Roles of miRNAs in Synapse Formation 455
4 A Role for miRNA Dysregulation in Neurodegenerative Disorders 456
4.1 Neurodegeneration as a Consequence of Deficits in miRNA Processing 456
4.2 miRNA Dysregulation in Human Neurodegenerative Disorders 457
4.3 Loss of miRNA Target Gene Binding Is Associated with Neurodegeneration 458
5 Conclusions and Future Perspectives 458
References 459
Specific and Surrogate Cerebrospinal Fluid Markers in Creutzfeldt–Jakob Disease 462
1 Introduction 463
2 Search for Pathological Values in Cerebrospinal Fluid of sCJD Patients 463
2.1 The Search for PrPSc 464
2.2 Search for Surrogate Markers 465
2.3 2D-PAGE Approach 466
3 Future Perspectives 468
References 470
Genome-Wide Expression Studies in Autism-Spectrum Disorders: Moving from Neurodevelopment to Neuroimmunology 475
1 Introduction 476
2 Genome-Wide Expression Studies in Autism Spectrum Disorders 477
3 Abnormal Immunity and Neuroinflammation in Autism 485
4 Conclusions and Future Perspectives 488
References 489
Protein Expression Profile of Alzheimer’s Disease Mouse Model Generated by Difference Gel Electrophoresis (DIGE) Approach 494
1 Introduction 495
2 Transgenic Mouse Model as a Tool for Studyof Alzheimer’s Disease Proteome 496
3 Generation of AD Proteomic Profile by DIGE Analysis 497
3.1 Sample Preparation and Labeling 498
3.2 Protein Separation and Determination of Differentiating Spots 498
3.3 MS Identification of Regulated Proteins 501
3.4 Analysis of Resulting Protein Set 503
4 Resulting Protein Expression Profile in Relation to the Current Knowledge of Alzheimer Disease 506
5 Conclusion and Perspectives 510
References 511
Proteomic Analysis of CNS Injury and Recovery 516
1 Introduction 517
2 Proteomics of Injury-Associated Proteins in the Mammalian CNS 517
2.1 Traumatic Brain Injury 517
2.1.1 Traumatic Brain Injury During Early Postnatal Development 517
2.1.2 Traumatic Brain Injury During Adulthood 519
2.2 Spinal Cord Injury 521
3 Proteome Analysis of Injury-Related Plasticity of the Mammalian Brain 522
3.1 Vestibular Compensation: The Restoration of Vestibular Function After Injury 522
3.2 Differential Proteome Analysis of Proteins Involved in Vestibular Compensation 523
4 Biomarkers of CNS Injury 524
4.1 Criteria for Useful Biomarkers 524
4.2 Production, Composition, and Function of the Cerebrospinal Fluid 524
4.3 Toward a Molecular Identification of Biomarkers of CNS Injury in Humans 525
5 Comparative Proteomic Analysis of Regeneration-Competent vs. Regeneration-Deficient Systems 526
5.1 Comparative Proteomics as a Strategy to Identify Novel Signals Associated with Regeneration 526
5.2 Regenerative Potential in the Teleost Fish Brain 527
5.3 Proteome Analysis of Proteins Involved in Repair of the Teleostean Brain 528
6 Potential Problems and Limitations of Proteome Analysis of Brain Injury-Associated Proteins 533
7 Perspectives 535
References 536
MALDI Imaging of Formalin-Fixed Paraffin-Embedded Tissues: Application to Model Animals of Parkinson Diseasefor Biomarker Hunting 542
1 What is MALDI Imaging Mass Spectrometry Procedure? 542
2 Application of MALDI-MSI to Brain Analyses 545
3 How to Apply MALDI-MSI to Archived Tissue in FFPE 546
4 Application of MALDI-MSI to Neurodegenerative Diseases: Parkinson’s Disease 547
References 556
Comparative Proteomic Analysis as a Method to Investigate Inflammatory and Neuropathic Pain 562
1 Introduction 563
2 Nociceptive Pain 563
2.1 Animal Models of Nociceptive Pain 564
2.1.1 Zymosan-Induced Paw Inflammation 564
3 Neuropathic Pain 564
3.1 Animal Models of Neuropathic Pain 565
3.1.1 Central Models 565
Weight Drop Model 565
Spinal Cord Hemisection 566
3.1.2 Peripheral Models 566
Spinal Nerve Ligation 567
Partial Nerve Ligation 567
Chronic Constriction Injury of the Sciatic Nerve 567
4 Proteomics 567
4.1 2D PAGE 568
4.2 Identification of 2D-Separated Proteins 569
5 Protein Expression Following Peripheral Inflammation 569
6 Protein Expression Following Neuropathic Pain 570
7 Conclusion 572
References 583
Index 588

Erscheint lt. Verlag 3.12.2010
Reihe/Serie Advances in Neurobiology
Advances in Neurobiology
Zusatzinfo XVI, 592 p.
Verlagsort New York
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Studium 2. Studienabschnitt (Klinik) Humangenetik
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 1-4419-7197-1 / 1441971971
ISBN-13 978-1-4419-7197-5 / 9781441971975
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Thieme (Verlag)
70,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Thieme (Verlag)
70,99