Digital Airborne Camera (eBook)
XII, 343 Seiten
Springer Netherland (Verlag)
978-1-4020-8878-0 (ISBN)
Digital airborne cameras are now penetrating the fields of photogrammetry and remote sensing. Due to the last decade's results in research and development in the fields of for instance detector technology, computing power, memory capacity position and orientation measurement it is now possible to generate with this new generation of airborne cameras different sets of geometric and spectral data with high geometric and radiometric resolutions within a single flight. This is a decisive advantage as compared to film based airborne cameras. The linear characteristic of the opto-electronic converters is the basis for the transition from an imaging camera to an images generating measuring instrument. Because of the direct digital processing chain from the airborne camera to the data products there is no need for the processes of chemical film development and digitising the film information. Failure sources as well as investments and staff costs are avoided. But the effective use of this new technology requires the knowledge of the features of the image and information generation, its possibilities and its restrictions.
This book describes all components of a digital airborne camera from the object to be imaged to the mass memory device. So the image quality influencing processes in nature are described, as for instance the reflection of the electromagnetic sun spectrum at the objects to be imaged and the influence of the atmosphere. Also, the essential features of the new digital sensor system, their characteristics and parameters, are addressed and put into the system context. The complexity of the cooperation of all camera components, as for instance optics, filters, detector elements, analogue and digital electronics, software and so forth, becomes transparent. The book includes also the description of example systems.
1
Dr. Rainer Sandau, PhD 1997 and habilitation 1990, is Chief Scientist at the German Aerospace Center (DLR) in Berlin, Germany. He has over 25 years of experience in airborne and spaceborne remote sensing activities. He was involved in optoelectronic ins
Digital airborne cameras are now penetrating the fields of photogrammetry and remote sensing. Due to the last decade's results in research and development in the fields of for instance detector technology, computing power, memory capacity position and orientation measurement it is now possible to generate with this new generation of airborne cameras different sets of geometric and spectral data with high geometric and radiometric resolutions within a single flight. This is a decisive advantage as compared to film based airborne cameras. The linear characteristic of the opto-electronic converters is the basis for the transition from an imaging camera to an images generating measuring instrument. Because of the direct digital processing chain from the airborne camera to the data products there is no need for the processes of chemical film development and digitising the film information. Failure sources as well as investments and staff costs are avoided. But the effective use of this new technology requires the knowledge of the features of the image and information generation, its possibilities and its restrictions.This book describes all components of a digital airborne camera from the object to be imaged to the mass memory device. So the image quality influencing processes in nature are described, as for instance the reflection of the electromagnetic sun spectrum at the objects to be imaged and the influence of the atmosphere. Also, the essential features of the new digital sensor system, their characteristics and parameters, are addressed and put into the system context. The complexity of the cooperation of all camera components, as for instance optics, filters, detector elements, analogue and digital electronics, software and so forth, becomes transparent. The book includes also the description of example systems.
1Dr. Rainer Sandau, PhD 1997 and habilitation 1990, is Chief Scientist at the German Aerospace Center (DLR) in Berlin, Germany. He has over 25 years of experience in airborne and spaceborne remote sensing activities. He was involved in optoelectronic ins
Preface 4
Contents 6
Contributors 10
Editor 10
List of Authors 10
1 Introduction 12
1.1 From Analogue to Digital Airborne Cameras 12
1.2 Applications for Digital Airborne Cameras in Photogrammetry and Remote Sensing 19
1.3 Aircraft Camera or Satellite Camera 24
1.3.1 Detection, Recognition, Identification 27
1.4 Matrix Concept or Line Concept 31
1.5 Selection of Commercial Digital Airborne Cameras 38
1.5.1 ADS80 38
1.5.2 DMC 40
1.5.3 UltraCam 40
2 Foundations and Definitions 42
2.1 Introduction 42
2.2 Basic Properties of Light 45
2.3 Fourier Transforms 52
2.4 Linear Systems 67
2.5 Sampling 80
2.6 Radiometric Resolution and Noise 89
2.7 Colour 100
2.8 Time Resolution and Related Properties 106
2.9 Comparison of Film and CCD 110
2.9.1 Comparison of the Imaging Process and the Characteristic Curve 110
2.9.2 Sensitivity 112
2.9.3 Noise 113
2.9.4 Signal to Noise Ratio (SNR) 113
2.9.5 Dynamic Range 114
2.9.6 MTF 115
2.9.7 MTF . Snr 115
2.9.8 Stability of Calibration 116
2.9.9 Spectral Range 117
2.9.10 Summary 118
2.10 Sensor Orientation 118
2.10.1 Georeferencing of Sensor Data 118
2.10.1.1 Relationship Between Sensor and Object Space 119
2.10.1.2 Self-calibration with Additional Parameters 121
2.10.1.3 Indirect Georeferencing 123
2.10.1.4 Orientation of Line-Scanner Images 125
2.10.1.5 Direct Georeferencing 126
2.10.2 Brief Review of GVP Concepts GPS GPS 127
2.10.3 Basics of Inertial Navigation 132
2.10.4 Concepts of Inertial/GPS Integration 139
3 The Imaged Object and the Atmosphere 141
3.1 Radiation in Front of the Sensor 141
3.2 Radiation at the Sensor 144
3.3 Contrast of a Scene at the Sensor 147
3.4 Bi-directional Reflectance Distribution Function BRDF BRDF 148
4 Structure of a Digital Airborne Camera 152
4.1 Introduction 152
4.1.1 Example 158
4.2 Optics and Mechanics 160
4.2.1 Effect of Geometry 160
4.2.2 The Effect of the Wave Nature of Light 162
4.2.3 Space-Bandwidth Product 162
4.2.4 Principal Rays 163
4.2.5 Physical Imaging Model 163
4.2.6 Data Transfer Rate of High Performance Optical System 164
4.2.7 Camera Constant and ''Pinhole'' Model 165
4.2.8 Pupil Characteristics 166
4.2.8.1 Perspective 166
4.2.8.2 Spectral Imaging 166
4.2.8.3 Radiometric Image Homogeneity 167
4.2.9 Design and Manufacturing Aspects 168
4.2.10 Summary of the Geometric Properties of an Image 169
4.2.10.1 Focal Length Focal length and Depth of Focus 169
4.2.10.2 Transmitting Power and f -Number 172
4.2.10.3 Angles on the Lens and Image Sides 172
4.2.10.4 Example 174
4.2.10.5 Swath Width and Base Length 176
4.2.10.6 Ground Pixel Size and GSD GSD 177
4.2.11 Aberrations and Precision of Registration 178
4.2.12 Radiometric Characteristics 180
4.2.12.1 Spectral Transmittance 180
4.2.13 Ideal Optical Transfer Function 181
4.2.14 Real Optical Transfer Function 184
4.2.15 Field Dependency of the Optical Transfer Function 186
4.2.15.1 Area Weighting 186
4.2.15.2 Equal Weighting 187
4.2.15.3 Conclusions 188
4.3 Filter 189
4.3.1 Absorption Filters 189
4.3.2 Interference Filters 192
4.4 Opto-Electronic Converters 192
4.4.1 Operating Principle 193
4.4.2 CCD Architectures 197
4.4.2.1 Lines 198
4.4.2.2 Matrices 199
4.4.3 Properties and Parameters 205
4.4.3.1 Signal-to-Noise Ratio 205
4.4.3.2 Noise Sources 205
4.4.3.3 Dark Signal (or Dark Current) 208
4.4.3.4 Dark-Signal Non-Uniformity ( DSNU DSNU ) 209
4.4.3.5 Photo Response Non-Uniformity ( PRNU PRNU ) 210
4.4.3.6 Dynamic Range (DR) 210
4.4.3.7 Noise Measurement (Photon Transfer Curve, PTC) 211
4.4.3.8 Blooming and Antiblooming Smear and Transfer Efficiency
4.4.3.9 Smear 213
4.4.3.10 Quantum Efficiency, Sensitivity, Responsivity 213
4.4.3.11 Shutter 216
4.4.3.12 Modulation Transfer Function (MTF) 216
4.5 Focal Plane Module 219
4.5.1 Basic Structure of a Focal Plane Module 219
4.6 Up-Front Electronic Components 221
4.6.1 CCD Control 222
4.6.2 Signal Pre-Processing 224
4.6.3 Analogue-Digital Conversion 226
4.7 Digital Computer 230
4.7.1 The Control Computer 230
4.7.1.1 Control and Monitoring PC and Software 231
4.7.1.2 The Image Data Channel 232
4.7.1.3 GPS/IMU System IMU 234
4.7.1.4 Power and Ambient Monitoring 235
4.7.1.5 Cabling and Integration 236
4.7.2 Data Compression 236
4.7.2.1 Lossless Data Compression 237
4.7.2.2 Lossy Data Compression 237
4.7.2.3 Data Normalisation 239
4.7.2.4 Compression in Hardware 240
4.7.3 Data Memory/Data Storage 240
4.8 Flight Management System 241
4.8.1 Flight Planning 242
4.8.2 Flight Evaluation 243
4.8.3 Flight Execution 243
4.8.4 Operator and Pilot Interface 245
4.8.5 Operator Concept 246
4.9 System for Measurement of Position and Attitude 247
4.9.1 GPS/IMU System in Operational Use 247
4.9.2 Integration of GPS/IMU Systems with Imaging Sensors 254
4.9.2.1 Overall System Calibration 254
4.9.2.2 Geodetic Aspects 256
4.9.2.3 Transformation of Rotation Angles 257
4.10 Camera Mount 259
4.10.1 Rigid Mount 259
4.10.2 Frequency Frequency Spectrum in Aircraft and MTF 259
4.10.2.1 Example 262
4.10.3 Uncontrolled Camera Mount 266
4.10.4 Controlled Camera Mount 267
5 Calibration 269
5.1 Geometric Calibration 269
5.2 Determination of Image Quality 275
5.3 Radiometric Calibration 276
6 Data Processing and Archiving 281
7 Examples of Large-Scale Digital Airborne Cameras 286
7.1 The ADS40 System: A Multiple-Line Sensor for Photogrammetry and Remote Sensing 286
7.1.1 Introduction 286
7.1.1.1 2nd Generation ADS40 287
7.1.1.2 3rd Generation ADS80 287
7.1.1.3 Advantages Which Speak for the Line Sensor Technology 288
7.1.1.4 Economic Aspects and Competitive Systems 288
7.1.1.5 The Path to the Ideal Lens System for Airborne Digital Cameras 289
7.1.1.6 The Definition of the Filters 290
7.1.1.7 The Choices for the Focal Plate Module 291
7.1.2 The Digital Control Unit 293
7.1.2.1 Control Unit CU80 and Mass Memory MM80 for the 3rd generation ADS80 296
7.1.3 Sensor Management 297
7.1.4 The Flight Planning and Navigation Navigation Software 299
7.1.5 The Position and Attitude Measurement System 300
7.1.6 The Gyro Stabilized Mount for the ADS40 301
7.1.7 The Radiometric und Geometric Calibration Calibration 302
7.1.8 Data Processing 304
7.1.9 Images Acquired with the ADS40 306
7.2 Intergraph DMC Digital Mapping Camera 314
7.2.1 Introduction 314
7.2.2 Lens Cone -- Basic Design of the DMC 315
7.2.3 Innovative Shutter Technology 316
7.2.4 CCD Sensor and Forward Motion Compensation Forward Motion Compensation 316
7.2.5 DMC Radiometric Resolution 318
7.2.6 DMC Airborne System Configuration 318
7.2.7 System Calibration and Photogrammetric Accuracy 319
7.3 UltraCam, Digital Large Format Aerial Frame Camera System 320
7.3.1 Introduction 320
7.3.2 UltraCamX Produces the Largest Format Digital Frame Images 321
7.3.2.1 Overview of the UltraCamX 321
7.3.2.2 The UltraCamX Sensor Unit 321
7.3.2.3 The UltraCam X Storage System 323
7.3.2.4 The UltraCam Software Components 324
7.3.3 UltraCam Design Concept 324
7.3.3.1 The Large-Format Panchromatic Sensor 325
7.3.3.2 The Four Band Multispectral Sensor 326
7.3.4 Geometric Calibration 327
7.3.4.1 The UltraCam Calibration Laboratory and Image Measurements 327
7.3.4.2 Computing the Camera Parameters 329
7.3.4.3 Post-Processing for Stitching and Additional Improvements 329
7.3.5 Geometric Accuracy at the 1m Level 330
7.3.5.1 Aerial Triangulation Aerial triangulation by 0 0 330
7.3.5.2 Aerial Triangulation by Check Points 332
7.3.5.3 Geometric Improvement by Auto-Calibration 332
7.3.6 Radiometric Quality and Multispectral Capability 334
7.3.7 The Potential of Digital Frame Cameras 335
7.3.8 Microsoft Photogrammetry 336
7.3.8.1 Aerial Missions 336
7.3.8.2 Best Visuals for Non-Expert Users 336
7.3.8.3 A 200 Petabyte Database? 337
Abbreviations 339
Bibliography 341
Index 347
Erscheint lt. Verlag | 10.12.2009 |
---|---|
Zusatzinfo | XII, 343 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geografie / Kartografie |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Naturwissenschaften ► Physik / Astronomie | |
Technik | |
Schlagworte | airborne camera • digital camera • Imaging • Optics • Photogrammetry • Remote Sensing • Remote Sensing/Photogrammetry |
ISBN-10 | 1-4020-8878-7 / 1402088787 |
ISBN-13 | 978-1-4020-8878-0 / 9781402088780 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich