Modern Differential Geometry in Gauge Theories (eBook)

Yang–Mills Fields, Volume II
eBook Download: PDF
2009 | 2010
XIX, 234 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4634-9 (ISBN)

Lese- und Medienproben

Modern Differential Geometry in Gauge Theories - Anastasios Mallios
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Original, well-written work of interest

Presents for the first time (physical) field theories written in sheaf-theoretic language

Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments

Author's mastery of the subject and the rigorous treatment of this text make it invaluable


Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author's perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications.Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Volume 1 focused on Maxwell fields. Continuing in Volume II, the author extends the application of his sheaf-theoretic approach to Yang-Mills fields in general. The important topics include: cohomological classification of Yang-Mills fields, the geometry of Yang-Mills A-connections and moduli space of a vector sheaf, as well as Einstein's equation in vacuum.The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity.

Contents 6
General Preface 9
Preface to Volume II 11
Acknowledgments 14
Contents of Volume I 17
Yang–Mills Theory:General Theory 18
Abstract Yang–Mills Theory 19
1 The Differential Setting 19
1.1 Vectorization of the Abstract de Rham Complex (Prolongations) 21
2 The Dual Differential Setting 23
2.1 Dual Differential Operators 26
3 The Abstract Laplace–Beltrami Operators 32
3.1 Positivity of the Laplacian and the Green’s Formula 35
4 The Abstract Yang–Mills Equations 38
4.1 Yang–Mills Fields 40
4.2 The Yang–Mills Category 42
4.3 Gauge Equivalent Yang–Mills Fields 45
4.4 Yang–Mills Equations 50
4.5 Self-Dual Gauge Fields 53
5 Yang–Mills Functional 57
5.1 Group of Gauge Transformations 60
5.2 Gauge Invariance of the Yang–Mills Functional 63
6 First Variational Formula 65
6.1 Variation of the Field Strength, Caused by a Variation of theGauge Potential 67
6.2 Covariant Differential Operators (Prolongations) for EndE 71
7 Volume Element 74
7.1 A Topological (C-)Algebra (Structure) sheafA 78
8 Yang–Mills Functional (continued): The Variation Formula 81
8.1 Lagrangian Density and Its Variation 84
9 Cohomological Classification of Yang–Mills Fields 86
9.1 Local Characterization of Yang–Mills Fields 89
9.2 The Map (9.1) 92
Moduli Spaces of A-Connections of Yang–Mills Fields 94
1 Preliminaries: The Group of Gauge Transformations or Groupof Internal Symmetries 94
1.1 The Internal Symmetry Group, as the Group of Gauge Transformations 99
2 Moduli Space of A-Connections 102
2.1 The Orbit Space ofA-Connections 107
2.2 The Orbit Space of a Maxwell Field 111
3 Moduli Space of A-Connections of a Yang–Mills Field 112
3.1 Moduli Space of Yang–Mills A-Connections 113
4 Moduli Space of Self-Dual A-Connections 115
5 Quantized Moduli Spaces 117
5.1 Morita Equivalence, as Applied to Second Quantization 121
Geometry of Yang–Mills A-Connections 123
1 Abstract Differential-Geometric Jargon in the Moduli Space of A-Connections 124
2 Tangent Spaces 129
3 Geometrical Meaning of T(ConnA(E), D) 130
4 O1(End E), as a Topological (C-)Vector Space Sheaf 138
4.1 Vector Sheaves, Locally Topological Modules 140
5 Geometric Meaning of T(ConnA(E), D) (continued) 142
6 Tangent Space of the Orbit of an A-Connection, T(OD, D) 144
7 The Moduli Space of A-Connections as an Affine Space. Gribov’s Ambiguity (`a la Singer) 148
General Relativity 154
General Relativity, as a Gauge Theory. Singularities 155
1 Abstract Differential-Geometric Setup 157
1.1 Curvature Operators 159
1.2 Scalar Curvature 164
1.3 Semi-Riemannian A-Modules 171
2 Lorentz A-Metrics 172
2.1 Lorentz A-Modules 174
2.2 Lorentz Yang–Mills Fields 177
3 Einstein Field Equations 182
3.1 The Classical Counterpart 185
3.2 Einstein Algebra Sheaves 186
3.3 Einstein–Riemannian Algebra Sheaves 187
4 Einstein–Hilbert Functional and Its First Variation 189
4.1 First Variational Formula of the Einstein–Hilbert Functional 189
5 Rosinger’s Algebra Sheaf 192
5.1 Basic Definitions 193
5.2 The Differential Triad, Based on Rosinger’s Algebra Sheaf 196
5.3 And-Metrics 200
5.4 And as a Topological Algebra Sheaf. Radon-Like Measures 201
6 Rosinger’s Algebra Sheaf (continued): Multifoam Algebra Sheaves 202
6.2 A Differential Triad Related to Rosinger’s Multifoam Algebra Sheaf 205
7 Singularities 206
8 Eddington–Finkelstein Coordinates 210
9 Singularities (continued) 211
9.1 ”Singularities” of the Metric 212
10 Quantum Gravity 213
11 Final Remark 223
11.1 On Einstein’s Equation (continued) 225
References 228
Index of Notation 238
Index 241

Erscheint lt. Verlag 22.10.2009
Zusatzinfo XIX, 234 p. 5 illus.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte A-Connections • Gauge Potential • Gauge Theory • Laplace–Beltrami Operators • Laplace–Beltrami Operators • Local Characterization • moduli space • Particle physics • Potential • Self-DualGauge Fields • Yang–Mills Functional • Yang–Mills Theory • Yang–Mills Functional • Yang–Mills Theory
ISBN-10 0-8176-4634-5 / 0817646345
ISBN-13 978-0-8176-4634-9 / 9780817646349
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich