Lectures on Ultrafast Intense Laser Science 1 (eBook)
XIV, 314 Seiten
Springer Berlin (Verlag)
978-3-540-95944-1 (ISBN)
Lectures on Ultrafast Intense Laser Science 1 3
Preface 5
Contents 7
Contributors 13
Chapter 1 Introduction to Atomic Dynamics in Intense Light Fields 14
1.1 Introduction 14
1.2 Historical Background 15
1.3 Virtual Absorption 18
1.4 Generalized Fermi Golden Rule 19
1.5 In Law 19
1.6 Above-Threshold Ionization 21
1.7 The Volkov State and KFR-Theory 24
1.8 High Harmonic Generation 29
1.9 Why Only Odd Harmonics? 29
1.10 Tests for the KFR-Model via the Floquet Theoryand Experiments 30
1.11 Many-Electron Atomic Systems in Intense Light Fields 33
1.12 Intense-Field Processes in Many-Body Systems 35
1.13 Correlations: Static and Dynamic 35
1.14 Intense-Field Many-Body S-Matrix Theory 36
1.15 Nonsequential Double Ionization 39
1.16 The ``CES' Diagram and ``Mechanism' of Double Ionization 42
1.17 Comments on Sum-Momentum Distributions 47
1.18 Comments on Multiple Ionization 49
References 52
Chapter 2 Foundations of Strong-Field Physics 54
2.1 Introduction 54
2.2 Special Features of Strong-Field Problems 55
2.3 General Quantum Transition Amplitude 58
2.3.1 Preliminaries 58
2.3.2 History of the S-Matrix 59
2.3.3 Derivation of the Transition Amplitude 60
2.4 Gauge Transformations 62
2.4.1 A Partial List of Gauge-Related Mistakes 67
2.4.2 Does a Laboratory Gauge Exist? 68
2.5 SFA (Strong-Field Approximation) 70
2.5.1 SFA Rates 71
2.5.2 SFA Spectra 73
2.5.3 SFA Momentum Distributions 76
2.6 Tunneling/Multiphoton Misconception 82
2.6.1 Tunneling and the Keldysh Parameter 84
2.7 Time Domains and Rescattering 86
2.8 Relativistic Effects 91
References 96
Chapter 3 High Intensity Physics Scaled to Mid-Infrared Wavelengths 98
3.1 Introduction 98
3.2 Mid-Infrared Sources at OSU 99
3.3 MIR Strong Field Ionization 100
3.3.1 Keldysh Parameter 100
3.3.2 Keldysh Scaling 103
3.3.3 Strong Field Ionization Photoelectron Energy Spectra 103
3.3.4 Wavelength Scaling of the Photoelectron Spectra 105
3.3.5 Wavelength Scaling of the Ionization Rate: TDSE vs. Tunneling Theory 107
3.3.6 Intensity Scaling of the Rescattering Plateau 107
3.3.7 Wavelength Scaling of the Rescattering Plateau 109
3.3.8 Ionization of Scaled Systems 109
3.3.9 The Low Energy Structure in the Photoelectron Energy Spectra 111
3.4 MIR High Harmonics and Attophysics 111
3.4.1 Scaling of the Harmonic Cutoff 113
3.4.2 Scaling of the Group Delay Dispersion 113
3.4.3 Scaling of the Harmonic Yield 118
3.5 Tomographic Reconstruction of Molecular Orbitals 119
References 121
Chapter 4 How Do Molecules Behave in Intense Laser Fields? Theoretical Aspects 123
4.1 Introduction 123
4.2 Electronic and Vibrational Dynamics of H2+ in a Near-IR Field 124
4.3 Time-Dependent Adiabatic State Approach and Its Application to Large Amplitude Vibrational Motion of C60 Induced by Near-IR Fields 127
4.4 Bond Dissociation Dynamics of Ethanol: Branching Ratio of C-C and C-O Dissociation 142
References 145
Chapter 5 Pulse Shaping of Femtosecond Laser Pulses and Its Application of Molecule Control 147
5.1 Introduction 147
5.2 Femtosecond Laser Pulse Shaping with a 4f Pulse Shaper 148
5.3 Spatiotemporal Coupling at 4f Pulse Shapers 157
5.4 Replica Pulse Formation with a PixelatedSLM Pulse Shaper 161
5.5 Femtosecond Laser Pulse Shaping with an AOPDF 165
5.6 How to Generate the Desired Ultrashort Laser Pulse in an Actual Laser System: Case 1: We Know the Desired Pulse Shape 167
5.7 How to Generate the Desired Ultrashort Laser Pulse in an Actual Laser System: Case 2: We Do Not Know What the Desired Pulse Shape Is 177
5.8 Adaptive Pulse Shaping for Dissociative Ionization of Ethanol Molecules 178
5.9 Adaptive Pulse Shaping of Two-Photon Excited Fluorescence Efficiency 182
References 184
Chapter 6 Nonlinear Interaction of Strong XUV Fields with Atoms and Molecules 186
6.1 Introduction 186
6.2 Generation of High-Power High-Order Harmonics 190
6.3 Spatial Properties of High-Order Harmonics 196
6.4 Characterization of Attosecond Pulses by PANTHER 198
6.5 Autocorrelation Measurement of Attosecond Pulses by Molecular Coulomb Explosion 206
6.6 Summary 211
References 211
Chapter 7 Ultrafast X-Ray Absorption Spectroscopy Using Femtosecond Laser-Driven X-Rays 213
7.1 Introduction 213
7.2 Soft X-Ray Emission from FemtosecondLaser-Produced Plasma 217
7.3 Time-Resolved XAFS Measurement of OpticallyExcited Silicon 222
7.4 Spatiotemporally Resolved XAS 229
7.5 Summary 232
References 232
Chapter 8 Quantum Emission and Its Application to Materials Dynamics 233
8.1 Introduction 233
8.2 Quantum Emission 234
8.3 Time-Resolved Imaging with Quantum Emission 236
8.4 Time-Resolved X-Ray Diffraction 241
8.5 Summary 247
References 249
Chapter 9 Filamentation Nonlinear Optics 250
9.1 Introduction 250
9.2 Self-Focusing and Filamentation Physics 250
9.3 Theoretical Model and Simulation 256
9.4 Background or Energy Reservoir 258
9.5 Extraordinary Properties of Filaments 261
9.6 Long-Distance Propagation in Air 262
9.7 Clean Fluorescence 263
9.8 Self-Pulse Compression 265
9.9 Self-Spatial Filtering 266
9.10 Self-Group Phase Locking 267
9.11 Nonlinear Optics Inside the Filament Core 269
9.12 Four-Wave Mixing Inside the Filament Core 269
9.13 Detection of Chemical and Biological Agents in Air Based on Clean Fluorescence 273
9.13.1 Halocarbons 273
9.13.2 CH4 273
9.13.3 Ethanol Vapor 274
9.13.4 CH4 in air 275
9.13.5 Bio-agents: Egg White and Yeast Powders 275
9.13.6 Summary of Remote Sensing Feasibility Using Only One Laser 278
9.14 Super-Excited States of Molecules Inside a Filament 280
9.15 Looking Ahead and Conclusion 281
References 283
Chapter 10 Diagnosing Intense and Ultra-intense Laser–Matter Interactions: Status and Future Requirements 285
10.1 Introduction on Ultra-Intense Laser–Matter Interactions 285
10.2 Optical Interferometry and Propagation Issues 295
10.3 Time-Resolved X-Ray Spectroscopy and Imaging 301
10.4 Fast Electron Production and Characterization 306
10.5 Summary and Future Instrumentation Requirements 314
References 314
Index 317
Erscheint lt. Verlag | 17.12.2010 |
---|---|
Reihe/Serie | Springer Series in Chemical Physics | Springer Series in Chemical Physics |
Zusatzinfo | XIV, 314 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie |
Naturwissenschaften ► Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | High-intensity laser physics • Pulse shaping techniques • Quantum emission and application • Ultrafast intense laser science • Ultrafast X-ray spectroscopy • Ultraintense laser matter interaction |
ISBN-10 | 3-540-95944-0 / 3540959440 |
ISBN-13 | 978-3-540-95944-1 / 9783540959441 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 23,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich