Animal Locomotion (eBook)

eBook Download: PDF
2010 | 2010
IX, 443 Seiten
Springer Berlin (Verlag)
978-3-642-11633-9 (ISBN)

Lese- und Medienproben

Animal Locomotion -
Systemvoraussetzungen
234,33 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The physical principles of swimming and flying in animals are intriguingly different from those of ships and airplanes. The study of animal locomotion therefore holds a special place not only at the frontiers of pure fluid dynamics research, but also in the applied field of biomimetics, which aims to emulate salient aspects of the performance and function of living organisms. For example, fluid dynamic loads are so significant for swimming fish that they are expected to have developed efficient flow control procedures through the evolutionary process of adaptation by natural selection, which might in turn be applied to the design of robotic swimmers. And yet, sharply contrasting views as to the energetic efficiency of oscillatory propulsion - especially for marine animals - demand a careful assessment of the forces and energy expended at realistic Reynolds numbers. For this and many other research questions, an experimental approach is often the most appropriate methodology. This holds as much for flying animals as it does for swimming ones, and similar experimental challenges apply - studying tethered as opposed to free locomotion, or studying the flow around robotic models as opposed to real animals. This book provides a wide-ranging snapshot of the state-of-the-art in experimental research on the physics of swimming and flying animals. The resulting picture reflects not only upon the questions that are of interest in current pure and applied research, but also upon the experimental techniques that are available to answer them.

Title Page 1
Preface 4
Table of Contents 6
Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them 10
Introduction 10
Ten questions for swimming hydrodynamics 11
Conclusions 19
A potential-flow, deformable-body model for fluid–structure interactions with compact vorticity: application to animal swimming measurements 23
Introduction 23
Experimental and analytical methods 24
Results 27
Discussion 30
References 31
Wake visualization of a heaving and pitching foil in a soap film 33
Introduction 33
Dimensionless parameterization of a flapping foil 34
Flapping foil mechanism 35
Soap film tunnel 37
Visualization setup 38
Vortex wake symmetry of a flapping foil 39
Concluding remarks 40
References 41
A harmonic model of hydrodynamic forces produced by a flapping fin 42
Introduction 42
Materials and methods 43
Results and discussion 44
Conclusions 47
References 48
Flowfield measurements in the wake of a robotic lamprey 50
Introduction 50
Experiment 51
Results 52
Conclusions 56
References 57
Impulse generated during unsteady maneuvering of swimming fish 58
Introduction 58
Materials and methods 59
Results and discussion 60
Conclusion 65
References 67
Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies 68
Introduction 68
Wake flow 70
Wake power 75
Conclusions and prospectus 77
References 78
Time resolved measurements of the flow generated by suction feeding fish 80
Introduction 80
Materials and methods 82
Results 86
Discussion 88
References 91
Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers (Teleostei: $Diodon holocanthus$) 92
Introduction 92
Experiments 93
Results and discussion 95
Conclusions 101
References 101
Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations 103
Introduction 103
Collective phenomena: the Zooming BioNematic (ZBN) 106
Coherence of polar and angular order: a novel use of PIV 107
Recruiting into ZBN domains 110
Modeling self-propelled microorganisms 111
Flows and forces 112
Swimming by microscopic organisms in ambient water flow 120
Introduction 120
Materials and methods 121
Results and discussion 128
Conclusions 131
References 131
Water-walking devices 134
Introduction 134
Design principles 135
Rowing 136
Leaping 138
Meniscus climbing 139
Concluding remarks 141
References 142
Flapping flexible fish 144
Introduction 144
Methods 145
Results 150
Discussion 159
References 161
Vortex dynamics in the wake of a mechanical fish 163
Introduction 163
Experimental set-up 164
Results 169
Conclusions 172
References 173
Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement 175
Introduction 175
Experimental apparatus and technology 176
Results and analysis 178
Conclusions and Discussion 184
References 185
PIV-based investigations of animal flight 187
Introduction 188
Control volume methods 190
Flight of birds and bats 196
Extensions and variations 199
Conclusions 200
Wing–wake interaction reduces power consumption in insect tandem wings 202
Introduction 202
The mechanical dragonfly model 204
Lift and drag production in tandem wings 205
Induced power during wing phasing 207
Aerodynamic power during wing phasing 208
Aerodynamic efficiency (Figure of Merit) 209
Conclusions 211
References 211
Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles 213
Introduction 213
Aims and objectives 216
Experimental setup 217
Uncertainty analysis 220
Results and discussion 224
Conclusions 231
References 232
Design and development considerations for biologically inspired flapping-wing micro air vehicles 235
Introduction 235
Knoller–Betz–Katzmayr effect 236
Flow over harmonically plunging airfoils 237
Boundary layer and flow separation control by means of harmonically plunging airfoils 239
Thrust measurements of oscillating airfoils in biplane arrangement 241
Experimental tests of the complete micro air vehicle 242
Summary and outlook 244
References 245
Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair 247
Introduction 247
Experimental details 249
Results 250
Conclusions 254
References 256
The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight 258
Introduction 258
Background 258
Experimental setup 259
Parameter space 260
Results 263
Conclusions 267
References 268
Wake patterns of the wings and tail of hovering hummingbirds 269
Introduction 269
Phase relationships between hummingbird wings and tail 270
Methods for recording flow features in hovering hummingbirds 271
PIV flow field analysis 272
Results of flow measurements 272
Discussion 276
References 279
Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight 281
Introduction 281
Experimental tools 282
Results and discussion 285
Conclusion 290
References 290
Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers 292
Introduction 292
Experimental setup and methods 293
Results 295
Conclusions 303
References 305
Aerodynamic and functional consequences of wing compliance 306
Introduction 306
Materials and methods 307
Results 310
Discussion 311
References 315
Shallow and deep dynamic stall for flapping low Reynolds number airfoils 316
Introduction 317
Experimental and computational setup 319
Results 323
Conclusion 333
References 333
High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers 335
Introduction 335
Methodology 337
Transitional flow over stationary SD7003 airfoil 338
Transitional flow over plunging SD7003 airfoil 341
Flexible membrane airfoil 348
Summary and conclusions 352
References 353
High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel 355
Introduction 355
Materials and methods 356
Results 359
Discussion 361
Conclusion 363
References 363
Time-resolved wake structure and kinematics of bat flight 365
Introduction 365
Experimental methods 367
Results and discussion 369
Concluding remarks 374
References 374
Experimental investigation of a flapping wing model 376
Introduction 376
Methods and materials 377
Results 381
Discussion 388
Conclusions 390
References 391
Aerodynamics of intermittent bounds in flying birds 393
Introduction 393
Methods 394
Results 397
Discussion 400
References 402
Experimental analysis of the flow field over a novel owl based airfoil 404
Introduction 404
Construction of an artificial owl based wing 405
Experimental setup and measurement techniques 410
Results and discussion 411
Conclusion and outlook 416
References 417
The aerodynamic forces and pressure distribution of a revolving pigeon wing 419
Introduction 420
Methods 420
Results and discussion 424
References 430
Author Index 432

Erscheint lt. Verlag 20.3.2010
Zusatzinfo IX, 443 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Schlagworte Development • Dynamics • fish • fluid- and aerodynamics • Fluid Dynamics • Pitch • Vortices
ISBN-10 3-642-11633-7 / 3642116337
ISBN-13 978-3-642-11633-9 / 9783642116339
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 96,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich