Bone Quantitative Ultrasound -

Bone Quantitative Ultrasound (eBook)

eBook Download: PDF
2010 | 2011
XII, 468 Seiten
Springer Netherlands (Verlag)
978-94-007-0017-8 (ISBN)
Systemvoraussetzungen
223,63 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Quantitative ultrasound (QUS) of bone is a relatively recent research field. The research community is steadily growing, with interdisciplinary branches in acoustics, medical imaging, biomechanics, biomedical engineering, applied mathematics, bone biology and clinical sciences, resulting in significant achievements in new ultrasound technologies to measure bone, as well as models to elucidate the interaction and the propagation of ultrasonic wave in complex bone structures. Hundreds of articles published in specialists journals are accessible from the Web and from electronic libraries. However, no compilation and synthesis of the most recent and significant research exist. The only book on QUS of bone has been published in 1999 at a time when the propagation mechanisms of ultrasound in bone were still largely unknown and the technology was immature. The research community has now reached a critical size, special sessions are organized in major international meetings (e.g., at the World Congress of Biomechanics, the annual meetings of the Acoustical Society of America, International Bone Densitometry Workshop, etc...). Consequently, the time has come for a completely up to date, comprehensive review of the topic. The book will offer the most recent experimental results and theoretical concepts developed so far and is intended for researchers, graduate or undergraduate students, engineers, and clinicians who are involved in the field. The central part of the book covers the physics of ultrasound propagation in bone. Our goal is to give the reader an extensive view of the mathematical and numerical models as an aid to understand the QUS potential and the types of variables that can be determined by QUS in order to characterize bone strength. The propagation of sound in bone is still subject of intensive research. Different models have been proposed (for example, the Biot theory of poroelasticity and the theory of scattering have been used to describe wave propagation in cancellous bone, whereas propagation in cortical bone falls in the scope of guided waves theories). An extensive review of the models has not been published so far. We intend in this book to present in details the models that are used to solve the direct problem and strategies that are currently developed to address the inverse problem. This will include analytical theories and numerical approaches that have grown exponentially in recent years. Most recent experimental findings and technological developments will also be comprehensively reviewed.
Quantitative ultrasound (QUS) of bone is a relatively recent research field. The research community is steadily growing, with interdisciplinary branches in acoustics, medical imaging, biomechanics, biomedical engineering, applied mathematics, bone biology and clinical sciences, resulting in significant achievements in new ultrasound technologies to measure bone, as well as models to elucidate the interaction and the propagation of ultrasonic wave in complex bone structures. Hundreds of articles published in specialists journals are accessible from the Web and from electronic libraries. However, no compilation and synthesis of the most recent and significant research exist. The only book on QUS of bone has been published in 1999 at a time when the propagation mechanisms of ultrasound in bone were still largely unknown and the technology was immature. The research community has now reached a critical size, special sessions are organized in major international meetings (e.g., at the World Congress of Biomechanics, the annual meetings of the Acoustical Society of America, International Bone Densitometry Workshop, etc...). Consequently, the time has come for a completely up to date, comprehensive review of the topic. The book will offer the most recent experimental results and theoretical concepts developed so far and is intended for researchers, graduate or undergraduate students, engineers, and clinicians who are involved in the field. The central part of the book covers the physics of ultrasound propagation in bone. Our goal is to give the reader an extensive view of the mathematical and numerical models as an aid to understand the QUS potential and the types of variables that can be determined by QUS in order to characterize bone strength. The propagation of sound in bone is still subject of intensive research. Different models have been proposed (for example, the Biot theory of poroealasticity and the theory of scattering have been used to describe wave propagation in cancellous bone, whereas propagation in cortical bone falls in the scope of guided waves theories). An extensive review of the models has not been published so far. We intend in this book to present in details the models that are used to solve the direct problem and strategies that are currently developed to address the inverse problem. This will include analytical theories and numerical approaches that have grown exponentially in recent years. Most recent experimental findings and technological developments will also be comprehensively reviewed.

Contents 5
Introduction 7
References 11
Bone Overview 13
1.1 Introduction 14
1.2 Bone Description 14
1.3 Bone Biomechanics 18
1.4 Densitometric and Morphological Parameters 30
1.5 Osteoporosis 33
1.6 Conclusion 36
References 36
Introduction to the Physics of Ultrasound 41
2.1 Fundamentals of Ultrasound 41
2.2 Tissue Interaction 49
References 55
Quantitative Ultrasound Instrumentation for Bone In Vivo Characterization 58
3.1 Introduction 59
3.2 Transverse Transmission 60
3.3 Axial Transmission 71
3.4 Discussion and Conclusion 75
References 77
Clinical Applications 83
4.1 Introduction 83
4.2 QUS for Fracture Risk Assessment 84
4.3 Diagnosis of Osteoporosis 85
4.4 Treatment Initiation 86
4.5 Monitoring Treatment with QUS 87
4.6 Quality Control 88
4.7 Summary 89
References 89
Poromechanical Models 92
5.1 Introduction 93
5.2 Biot Theory 94
5.3 Review of the Application of Biot Theory to Propagation Through Cancellous Bone 103
5.4 Sensitivity of the Biot’s Model to Selected Parameters 116
5.5 Conclusions 123
References 125
Scattering by Trabecular Bone 131
6.1 Introduction 131
6.2 Scattering Models for Cancellous Bones 133
6.3 Estimation of Cancellous Bone Properties Using Scattering 138
6.4 Is Cancellous Bone a Multiple Scattering Medium? 143
6.5 Clinical Applications of Scattering 145
6.6 Discussion and Conclusion 146
References 148
Guided Waves in Cortical Bone 154
7.1 Introduction 154
7.2 Idealized Waveguides 156
7.3 Guided WaveMeasurements in Axial Transmission Configuration 168
7.4 Current Measurement Techniques on Long Cortical Bone 175
7.5 Challenges 179
References 181
Numerical Methods for Ultrasonic Bone Characterization 187
8.1 Introduction 187
8.2 Methodology 190
8.3 Literature Review 220
8.4 Conclusion 227
References 230
Homogenization Theories and Inverse Problems 235
9.1 Introduction 235
9.2 Diphasic Macroscopic Model for Cancellous Bone 236
9.3 Random Distribution of Pores 241
9.4 Blood-Marrow Mixture as a Non-Newtonian Fluid 249
9.5 Numerical Upscaling 254
9.6 Inverse Problems 260
9.7 Concluding Remarks 265
References 266
Linear Acoustics of Trabecular Bone 270
10.1 Introduction 271
10.2 Experimental Methods and Parameters for Quantitative Bone Ultrasound 272
10.3 Dual Frequency Ultrasound Technique 279
10.4 Relationships of Ultrasound Parameters with Bone Structure, Composition and Mechanical Properties 283
10.5 Clinical Suitability of Quantitative Bone Ultrasound 288
References 289
The Fast and SlowWave Propagation in Cancellous Bone: Experiments and Simulations 295
11.1 Introduction 296
11.2 Experimental Approach: Measurement of Fast and Slow Waves 297
11.3 Comparative Study of Experiments and Simulations 307
11.4 Towards Clinical Application of the Two-Wave Phenomenon 314
11.5 Conclusions 318
References 319
Phase Velocity of Cancellous Bone: Negative Dispersion Arising from Fast and SlowWaves, Interference, Diffraction, and Phase Cancellation at Piezoelectric Receiving Elements 323
12.1 Introduction 323
12.2 Calculation of Phase Velocity 324
12.3 Anomalous Negative Dispersion in Cancellous Bone 324
12.4 Proposed Explanations of Negative Dispersion in Bone 325
12.5 Interfering Wave Modes 326
12.6 Analysis of Interfering Waves Using Bayesian Probability Theory 327
12.7 Phase Cancellation and Diffraction Effects 330
12.8 Conclusion 331
References 331
Linear Ultrasonic Properties of Cortical Bone: In Vitro Studies 335
13.1 Introduction 335
13.2 Material and Methods 338
13.3 Velocity Measurements 341
13.4 Attenuation Measurements 345
13.5 Dispersion Measurements 352
13.6 Conclusion 359
References 359
Ultrasonic Monitoring of Fracture Healing 365
14.1 Introduction 366
14.2 Ultrasonic Configurations and Measured Quantities 367
14.3 Experimental Studies 368
14.4 Computational Studies 375
14.5 Conclusion 380
References 381
Nonlinear Acoustics for Non-invasive Assessment of Bone Micro- damage 384
15.1 Introduction 385
15.2 Application of Nonlinear Acoustics to Experimental Assessment of Damage in Bone 385
15.3 Theoretical Modeling of Damage-induced Nonlinearity, Limitations of the Technique 403
15.4 Conclusion 407
References 408
Microscopic Elastic Properties 412
16.1 Introduction 412
16.2 Material and Methods 424
16.3 Results 429
16.4 Conclusion 438
References 440
Ultrasonic Computed Tomography 443
17.1 Introduction 444
17.2 Ultrasonic Computed Tomography 445
17.3 The UCT-Scanner 450
17.4 Results 451
17.5 Conclusion 458
References 459
Index 462

Erscheint lt. Verlag 30.11.2010
Zusatzinfo XII, 468 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Sonographie / Echokardiographie
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik
Schlagworte ultrasonography
ISBN-10 94-007-0017-2 / 9400700172
ISBN-13 978-94-007-0017-8 / 9789400700178
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Referenzwerk zur echokardiografischen Diagnostik

von Frank Arnold Flachskampf

eBook Download (2021)
Georg Thieme Verlag KG
241,99
Das Referenzwerk zur echokardiografischen Diagnostik

von Frank Arnold Flachskampf

eBook Download (2021)
Georg Thieme Verlag KG
241,99
Unter Berücksichtigung nationaler und internationaler Leitlinien

von Frank Arnold Flachskampf

eBook Download (2021)
Georg Thieme Verlag KG
159,99