Theoretical and Experimental Sonochemistry Involving Inorganic Systems (eBook)

eBook Download: PDF
2010 | 2011
XIV, 404 Seiten
Springer Netherland (Verlag)
978-90-481-3887-6 (ISBN)

Lese- und Medienproben

Theoretical and Experimental Sonochemistry Involving Inorganic Systems -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Despite the fact that chemical applications of ultrasound are now widely acknowledged, a detailed presentation of inorganic systems covering nano-particles, catalysis, aqueous chemistry of metallic solutions and their redox characteristics, both from a theoretical and experimental perspective has eluded researchers of this field.

Theoretical and Experimental Sonochemistry Involving Inorganic Systems fills this gap and presents a concise and thorough review of this fascinating area of Sonochemistry in a single volume.


Despite the fact that chemical applications of ultrasound are now widely acknowledged, a detailed presentation of inorganic systems covering nano-particles, catalysis, aqueous chemistry of metallic solutions and their redox characteristics, both from a theoretical and experimental perspective has eluded researchers of this field.Theoretical and Experimental Sonochemistry Involving Inorganic Systems fills this gap and presents a concise and thorough review of this fascinating area of Sonochemistry in a single volume.

Foreword 6
Preface 8
About the Editors 10
Acknowledgement 12
Contents 14
Chapter 1: Fundamentals of Acoustic Cavitation and Sonochemistry 16
1.1 Introduction 16
1.2 Acoustic Cavitation 17
1.2.1 Transient and Stable Cavitation 17
1.2.2 Nucleation of Bubbles 20
1.2.3 Growth of a Bubble 22
1.2.4 Radiation Forces on a Bubble (Primary and Secondary Bjerknes Forces) 22
1.2.5 Bubble Radial Dynamics 24
1.2.6 Inertial Collapse (Rayleigh Collapse) 26
1.3 Sonochemistry 28
1.3.1 Single-Bubble Sonochemistry 28
1.3.2 Optimal Bubble Temperature for Oxidant Production 29
1.3.3 Three Sites for Chemical Reactions 30
1.3.4 Size of Active Bubbles 31
1.3.5 Effect of a Surfactant 33
1.3.6 Nucleation of Particles by Ultrasound 34
1.3.7 Enhancement of Mass Transfer 34
1.4 Conventional Ultrasonic Reactors 35
1.4.1 Bath-type Reactor 35
1.4.2 Ultrasonic Horn 37
1.5 Bubble-Bubble Interaction 39
1.6 Conclusion 39
References 40
Chapter 2: Theory of Cavitation and Design Aspects of Cavitational Reactors 45
2.1 Introduction 45
2.2 Mechanism of Cavitational Effects for Chemical Processing 49
2.3 Design Aspects of Cavitational Reactors 51
2.3.1 Designs of Sonochemical Reactors 52
2.3.1.1 Probe Systems 52
2.3.1.2 Ultrasonic Baths 55
2.3.1.3 Flow Systems 56
2.3.2 Understanding Cavitational Activity Distribution 58
2.3.3 Design Related Information Based on Mapping Investigations 61
2.4 Optimization of Operating Parameters 64
2.4.1 Frequency of Ultrasound 65
2.4.2 Intensity of Irradiation 66
2.4.3 Geometrical Design of the Reactor 67
2.4.4 Liquid Phase Physicochemical Properties 68
2.4.5 Bulk Temperature of Liquid Medium 69
2.5 Intensification of Cavitational Activity in the Sonochemical Reactors 69
2.5.1 Use of Process Intensifying Parameters 70
2.5.1.1 Use of Gases 70
2.5.1.2 Use of Solid Particles 71
2.5.2 Use of Combination of Cavitation and Advanced Oxidation Processes 72
2.5.3 Combined Use of Microwave Irradiation and Sonochemistry 74
2.6 Qualitative Considerations for Reactor Choice, Scaleup and Optimization 75
2.7 Concluding Remarks 77
References 78
Chapter 3: Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation 82
3.1 Introduction 82
3.2 Generation of Hydrodynamic Cavitation 84
3.3 Comparison with Acoustic Cavitation 85
3.4 Bubble Dynamics Analysis 87
3.5 Hydrodynamic Cavitation Reactor Configurations 90
3.5.1 High Pressure Homogenizer 91
3.5.2 High Speed Homogenizer 91
3.5.3 Low Pressure Hydrodynamic Cavitation Reactor 92
3.6 Guidelines for Selection of Hydrodynamic Cavitation Reactor Configurations 93
3.7 Overview of Applications of Hydrodynamic Cavitation 95
3.7.1 Chemical Synthesis 95
3.7.1.1 Hydrolysis of Fatty Oils 95
3.7.1.2 Depolymerization Reactions 96
3.7.1.3 Oxidation Reactions 96
3.7.1.4 Synthesis of Biodiesel 99
3.7.1.5 Synthesis of Rubber Nano-Suspensions 100
3.7.1.6 Synthesis of Nanosize Catalyst Particles 101
3.7.1.7 Synthesis Process for Pulp/Paper Production 102
3.7.2 Microbial Cell Disruption 102
3.7.3 Microbial Disinfection 105
3.7.4 Wastewater Treatment 108
3.7.5 Flotation 112
3.7.6 Miscellaneous Applications 114
3.7.6.1 Dental Water Irrigator Employing Hydrodynamic Cavitation 114
3.7.6.2 Preparation of Free Disperse System Using Liquid Hydrocarbons 114
3.8 Concluding Remarks 115
References 115
Chapter 4: Sonoelectrochemical Synthesis of Materials 120
4.1 Introduction 120
4.2 Experimental Systems 122
4.3 Inorganic Sonoelectrosynthesis 127
4.3.1 Gases 127
4.3.2 Hydrogen Peroxide 127
4.3.3 Colloidal Hydrous Metal Oxide Reductions 128
4.3.4 Metal Deposits 128
4.3.5 Metal Oxides Deposits and Other Derivatives 130
4.3.6 Nanomaterials 131
4.4 Influence of the Operational Variables 135
4.5 Benefits of the Ultrasound for the Electrochemical Processes 136
References 137
Chapter 5: Sonochemical Synthesis of Metal Nanoparticles 143
5.1 Introduction 143
5.2 Reduction Mechanism of Metal Ions in Aqueous Solution Under Ultrasonic Irradiation 145
5.3 Effects of Various Parameters on the Rates of Reduction of Metal Ions 146
5.3.1 Effect of Organic Additives on the Rate of Reduction 147
5.3.2 Effects of Ultrasound Intensity on the Rate of Reduction 149
5.3.3 Effects of Dissolved Gas on the Rate of Reduction 150
5.3.4 Effects of the Distance Between Reaction Vessel and Oscillator on the Rate of Reduction 151
5.3.5 Effects of Ultrasound Frequency on the Rate of Reduction 151
5.4 Effects of Various Parameters on the Properties of Metal Nanoparticles 153
5.4.1 Effects of the Rates of Reduction on the Size of the Formed Nanoparticles 153
5.4.2 Sonochemical Synthesis of Supported Metal Nanoparticles 155
5.4.3 Sonochemical Synthesis of Bimetallic Nanoparticles 157
5.4.4 Use of Templates for Controlling the Size of Sonochemically Formed Metal Particles 158
References 160
Chapter 6: Sonochemical Preparation of Monometallic, Bimetallic and Metal-Loaded Semiconductor Nanoparticles 163
6.1 Introduction 163
6.2 Monometallic Nanoparticles 165
6.3 Bimetallic Nanoparticles 169
6.4 Metal-Loaded Semiconductor Nanoparticles 173
6.5 Summary 177
References 177
Chapter 7: Acoustic and Hydrodynamic Cavitations for Nano CaCO3 Synthesis 182
7.1 Introduction 182
7.2 Theoretical Aspects: Crystallization and Sonocrystallization to Form Inorganic Nanoparticles 185
7.3 Cavitation Assisted Synthesis of Nano CaCO3 187
7.3.1 Effect of Ultrasound on CaCO3 Synthesis 187
7.3.2 In Situ Functionalization of Nano CaCO3 During Ultrasound Assisted Carbonation Process 190
7.3.3 Hydrodynamic Cavitation Approach for Synthesis of Nano CaCO3 Particles 194
7.4 Summary 198
References 198
Chapter 8: Sonochemical Synthesis of Oxides and Sulfides 201
8.1 Introduction 201
8.2 Formation Mechanism of Crystallinity Versus Amorphicity of Materials 202
8.3 Important Reaction Parameters for Sonochemical Reactions 203
8.4 Characteristics/Advantages with Ultrasonic System 203
8.5 Synthesis of Oxides by Ultrasound 203
8.5.1 ZnO 204
8.5.1.1 Ultrasound and Ionic Liquid 205
8.5.2 Fe2O3 207
8.5.3 MgO 208
8.5.4 PbO 208
8.5.5 PbO2 208
8.5.6 SnO and SnO2 209
8.5.7 Eu2O3 209
8.5.8 HgO 209
8.5.9 Silica 210
8.5.10 V2O5 210
8.5.11 TiO2 210
8.5.12 ZrO2 211
8.5.13 Other Mixed Metal Oxides 211
8.5.14 Ultrasound Assisted Techniques 212
8.5.14.1 Ultrasound and Microwave 212
8.5.14.2 Ultrasound and Photochemistry 213
8.5.14.3 Ultrasound and Electrochemistry (Sonoelectrochemistry) 213
8.6 Sulfides 213
8.6.1 ZnS 214
8.6.2 CdS 214
8.6.3 CuS 215
8.6.4 PbS 216
8.6.5 MoS2 216
8.6.6 In2S3 217
8.6.7 Bi2S3 217
8.6.8 NbS2 217
8.6.9 AgBiS2 218
8.7 Conclusions 218
References 218
Chapter 9: Aqueous Inorganic Sonochemistry 222
9.1 Introduction 222
9.2 Chemical Effects of Ultrasound 224
9.2.1 Study of Chemical Reactions of Metal Ions in Water 230
9.2.2 Study of Monovalent Ions 231
9.2.2.1 Silver, Ag+ 232
Mercurous ion, Hg2þ 234
9.2.3 Study of Divalent Ions 235
9.2.3.1 Lead, Pb2+ 235
9.2.3.2 Mercury(II), Hg2+ 237
9.2.3.3 Copper, Cu2+ 239
Normal Reaction of Water with CuSO4 in Non-hydrolysed State 242
Reaction due to Ultrasound 242
Reaction After the Ultrasonic Source Was Stopped (Slowly Reverting to the Original Composition) 243
9.2.3.4 Cadmium, Cd2+ 244
9.2.3.5 Tin, Sn2+ 245
9.2.3.6 Nickel, Ni2+ 248
9.2.3.7 Zinc, Zn2+ 251
9.2.3.8 Alkaline Earth Metals (Mg2+, Ca2+, Sr2+ and Ba2+) 253
9.2.3.9 Platinum, Pt2+/4+ 254
9.2.4 Study of Trivalent Ions 255
9.2.4.1 Arsenic, As3+ 255
Removal of Arsenic Using a Coagulant 256
9.2.4.2 Bismuth, Bi3+ 258
9.2.4.3 Antimony, Sb3+ 260
9.2.4.4 Aluminium, Al3+ 262
9.2.4.5 Gold, Au3+ 265
9.2.5 Hardness Mitigation and Bacterial Decay 267
9.2.6 Ultrasound Initiated Crystallization 268
References 271
Chapter 10: Sonochemical Study on Multivalent Cations (Fe, Cr, and Mn) 281
10.1 Introduction 281
10.2 Experimental 285
10.2.1 Iron, Fe 285
10.2.1.1 Reduction of Fe3+ to Fe2+ 285
10.2.1.2 Oxidation of Fe2+ to Fe3+ 286
10.2.1.3 Decomposition of [Fe(SCN)6]3- complex 286
10.2.1.4 Oxidation of Cl- and SCN- 287
10.2.2 Chromium (Cr) 288
10.2.3 Chromium and Manganese 290
10.3 Conclusion 292
References 292
Chapter 11: Sonochemical Degradation of Phenol in the Presence of Inorganic Catalytic Materials 294
11.1 Introduction 294
11.2 Remediation Methods of Phenol 296
11.2.1 Sonochemical Methods 296
11.3 Experimental 303
11.3.1 Synthesis of Catalyst 303
11.3.2 Sonophotocatalytic Degradation of Phenol 305
11.4 Mechanism 313
References 314
Chapter 12: Sonophotocatalytic Degradation of Amines in Water 321
12.1 Introduction 321
12.2 Remediation Methods 323
12.3 Degradation of Amines 326
12.3.1 Ethyl Amine (EA) 326
12.3.2 Aniline (A) 327
12.3.3 Diphenylamine (DPA) and Naphthyl Amine (NA) 328
12.3.4 Effect of La, Pr, Nd, Sm and Gd ions 331
12.3.5 Mechanism 332
References 335
Chapter 13: Sonoluminescence of Inorganic Ions in Aqueous Solutions 343
13.1 Introduction 343
13.2 Experimental System 345
13.3 The Site of Emission 347
13.4 Transfer of Metal Species into Bubbles 354
13.5 Alkali-Metal Atom Emission and Continuum Emission 355
13.6 Conclusions 359
References 360
Chapter 14: The Role of Salts in Acoustic Cavitation and the Use of Inorganic Complexes as Cavitation Probes 362
14.1 The Use of Inorganic Complexes to Probe the Conditions of Cavitation 362
14.2 The Effect of Simple Electrolytes and Gas Type on Cavitation and Sonoluminescence 369
14.3 Conclusions 381
References 382
Chapter 15: Introductory Experiments in Sonochemistry and Sonoluminescence 385
15.1 Introduction 385
15.1.1 Experiment 387
15.1.2 Experiment 387
15.1.3 Experiment 388
15.1.4 Experiment 389
15.1.4.1 Synthesis of Benzanilide 389
15.1.4.2 Synthesis of Phenylbenzoate 390
15.1.4.3 Synthesis of Bromoderative of Phenol 390
15.1.4.4 Synthesis of Acetanilide 390
15.1.4.5 Synthesis of Aspirin 391
15.1.4.6 Synthesis of Anthranilic Acid 391
15.1.4.7 Synthesis of Benzamide 392
15.1.5 Experiment 392
15.1.6 Experiment 393
15.1.7 Experiment 393
15.1.8 Experiment 394
Index 399

Erscheint lt. Verlag 17.10.2010
Zusatzinfo XIV, 404 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Technik
Schlagworte Cavitation • Sonochemical Experiments • sonochemistry • Ultrasound
ISBN-10 90-481-3887-6 / 9048138876
ISBN-13 978-90-481-3887-6 / 9789048138876
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95