WOLEDs and Organic Photovoltaics (eBook)

Recent Advances and Applications

Vivian W. W. Yam (Herausgeber)

eBook Download: PDF
2010 | 2010
VII, 240 Seiten
Springer Berlin (Verlag)
978-3-642-14935-1 (ISBN)

Lese- und Medienproben

WOLEDs and Organic Photovoltaics -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A major global issue that the world is facing today is the upcoming depletion of fossil fuels and the energy crisis. In 1998, the global annual energy consumption was 12. 7 TW; of which 80% was generated from fossil fuels. This also translates into huge annual emissions of CO that leads to massive environmental problems, 2 particularly the global warming, which could be disastrous. Future global annual energy needs are also estimated to rise dramatically. A major challenge confronting the world is to ?nd an additional 14-20 TW by 2050 when our energy reserves based on fossil fuels are vanishing. The massive demand for energy would require materials and/or processes that would help to provide new sources of clean ren- able energy or to develop processes that would harvest energy or to better utilize energy in an ef?cient manner. The present monograph, WOLEDs and Organic Photovoltaics - Recent Advances and Applications, focuses on a very important and timely subject of topical interest that deals with the more ef?cient use of energy through white organic light-emitting diodes (WOLEDs) for solid-state lighting and the development of clean sources of renewable energy through the harvesting of light energy for conversion into electrical energy in organic photovoltaics. While LED solid-state lighting and photovoltaics have been dominated by inorganic semiconductor materials and silicon-based solar cells, there have been growing interests in the development of WOLEDs and organic photovoltaics.

Preface 5
Contents 7
Overview and Highlights of WOLEDs and Organic Solar Cells: From Research to Applications 9
1 Introduction 10
2 White Organic Light-Emitting Devices 11
2.1 Advantages of WOLEDs 11
2.2 Efficiency Characterization of WOLEDs 12
2.3 WOLED Architectures 14
2.3.1 WOLEDs with Single Emitting Layer 15
2.3.2 Phosphorescent WOLEDs 18
2.3.3 Hybrid WOLEDs 19
2.4 Challenges of WOLEDs 20
2.5 Lighting for the Future 21
3 Organic Solar Cells 22
3.1 Basic Working Principle of Organic Photovoltaic Devices 25
3.2 Device Characteristics of an OPV Device 27
3.2.1 Short-Circuit Current 28
3.2.2 Open-Circuit Voltage 28
3.2.3 Fill Factor 28
3.2.4 Power Conversion Efficiency 28
3.2.5 Incident Photon to Current Efficiency 30
3.3 OPV Device Architecture 30
3.3.1 Exciton Blocking Layer 31
3.3.2 Optical Spacer 33
3.3.3 Bulk Heterojunction 34
3.3.4 Low Bandgap Photoactive Materials 36
3.3.5 Tandem Structures 37
3.4 Challenges of OPV Devices 38
4 Conclusions 39
References 39
White-Emitting Polymers and Devices 44
1 Introduction 45
2 Characterization of White Polymer Light-Emitting Devices 45
2.1 Color Quality of White Polymer Light-Emitting Devices 45
2.2 Characterization for WPLED Efficiency 47
3 White Light-Emitting Polymers 51
3.1 WLEPs Containing Blue and Yellow-Orange Chromophores 52
3.1.1 Complementary Colors Based WLEPs Utilizing Singlet Exciton 52
3.1.2 Complementary Colors Based WLEPs Utilizing both Singlet and Triplet Excitons 55
3.2 WLEPs Containing Blue-, Green-, and Red-Emitting Chromophores 57
3.2.1 RGB Primary Colors Based WLEPs Utilizing Singlet Excitons 58
3.2.2 RGB Primary Colors Based WLEPs Utilizing both Singlet and Triplet Excitons 60
4 White Polymer Light-Emitting Devices 64
4.1 WPLEDs Using Dye-Dispersed Polymer Blend 64
4.1.1 WPLEDs Using Fluorescent Dye-Dispersed Polymer Blend 64
4.1.2 WPLEDs Using Phosphorescent Dye-Dispersed Polymer Blend 68
4.2 WPLEDs from All-Polymer Blends 71
4.2.1 WPLEDs from Fluorescent Polymer Blends 71
4.2.2 WPLEDs from Phosphorescent Polymer Blends 73
4.3 WPLEDs from Excimer/Exciplex 75
4.4 WPLEDs from Multiple Emissive Layers 77
4.5 WPLEDs with Functional Charge-Injection/Transport Layers 78
5 Conclusions 83
References 83
Phosphorescent Platinum(II) Complexes for White Organic Light-Emitting Diode Applications 86
1 Introduction 87
2 Working Principle for WOLEDs 88
2.1 Mixing Red-Green-Blue 88
2.2 Mixing Complementary Colors 89
2.3 Emitting Materials with Complementary Colors 90
3 Phosphorescent Platinum(II)-Based Materials 90
3.1 Bidentate Platinum(II) Complexes 92
3.1.1 Cyclometalated Platinum(II) beta-diketonato [(C^N)Pt(O^O)] Complexes 92
3.1.2 Platinum(II) Di(pyridyl)triazolate [Pt(N^N)2] Complexes 95
3.1.3 Platinum(II) Bis(8-hydroxyquinolato) [PtQ2] Complexes 95
3.2 Tridentate Platinum(II) Complexes 97
3.2.1 Platinum(II) Di(2-pyridiyl)benzene [Pt(N^C^N)X] Complexes 97
3.2.2 Platinum(II) 3-(6-(2-naphthyl)-2-pyridyl)isoquinolinyl [(RC^N^N)PtCl] Complexes 101
3.3 Tetradentate Platinum(II) Complexes 102
3.3.1 Platinum(II) Bis(phenoxy)diimine and Schiff Base Complexes [Pt(N2O2)] 102
3.4 Binuclear Platinum(II) Complexes 104
3.5 Polymeric Materials 107
4 Summary 110
References 110
Solid-State Light-Emitting Electrochemical Cells Based on Cationic Transition Metal Complexes for White Light Generation 112
1 Introduction 113
1.1 Features of Light-Emitting Electrochemical Cells 113
1.2 Organization of This Chapter 113
2 Review of Light-Emitting Electrochemical Cells Based on Cationic Transition Metal Complexes 114
2.1 Increasing Device Efficiency 114
2.2 Color Tuning 125
2.3 Lengthening Device Lifetime 127
2.4 Shortening Turn-On Time 128
3 White Light-Emitting Electrochemical Cells Based on Cationic Transition Metal Complexes 134
3.1 Photophysical and Electrochemical Properties of NovelBlue-Green and Red-Emitting Cationic Iridium Complexes 134
3.2 Electroluminescent Properties of White Light-Emitting Electrochemical Cells Based on Host-Guest Cationic Iridium Complexes 138
4 Outlook 140
References 141
Horizontal Molecular Orientation in Vacuum-Deposited Organic Amorphous Films 143
1 Introduction 144
2 Experiments and Calculations 146
2.1 Variable Angle Spectroscopic Ellipsometry 146
2.2 Cutoff Emission Measurement 148
3 Results and Discussion 150
4 Summary 156
References 156
Recent Advances in Sensitized Solar Cells 158
1 Introduction 159
1.1 Disorder in Nanoporous Nanostructured TiO2 Films 159
1.2 Molecular Adsorbents 160
2 Experimental Methods 161
3 Oriented Nanotube Arrays 162
3.1 Disordered Particle Films Versus Oriented Nanotube Films 162
3.2 Orientational Disorder in Nanotube Films 164
4 Molecular Adsorbent Effects 170
5 Conclusions 172
References 173
Implications of Interfacial Electronics to Performance of Organic Photovoltaic Devices 174
1 Introduction 175
2 Importance of Interfacial Studies in OPV Devices 175
3 Conceptual Aspects of Organic-Organic Heterojunction 177
4 Experimental Techniques and Sample Preparation 179
5 Ambient Effects on Copper Phthalocyanine/Fullerene Photovoltaic Interface 181
5.1 UPS Studies on ITO/CuPc/C60 (Without Exposure) 181
5.2 UPS Studies on ITO/CuPc/C60 (with Exposure) 182
5.3 Effect of Exposure to Low Vacuum 183
6 The Role of Deposition Sequence and the Substrate Effect on C60/CuPc and CuPc/C60 Heterojunctions 185
6.1 The Role of Deposition Sequence (CuPc/C60 vs. C60/CuPc) 186
6.2 The Role of Substrate Work Function 188
6.3 Summary on CuPc-C60 Interface 194
7 Metal-Doped Organic Layer as an Exciton Blocker/Optical Spacer 194
7.1 Structural Considerations of Combining Optical Spacer and EBL 194
7.2 The Limitation on Combining Optical Spacer and Exciton Blocker 195
7.3 Effect of Doping the EBL with Metal 196
7.4 Interface Study on Combined Optical Spacer and Exciton Blocker 198
8 Conclusion 200
References 200
Improving Polymer Solar Cell Through Efficient Solar Energy Harvesting 203
1 Introduction 204
2 RR-P3HT:PCBM System 205
2.1 Slow Growth (Solvent Annealing) 206
2.2 Mixed Solvent 216
3 Efficient Inverted Polymer Solar Cells Using Functional Interfacial Layers 224
4 Development of Low Bandgap Polymers for Polymer Solar Cells 230
5 Summary 238
References 238
Index 241

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Green Energy and Technology
Green Energy and Technology
Zusatzinfo VII, 240 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte devices • Electronics • Energy harvesting • Material • OLED • Organic Amorphous Films • Organic Photovoltaics • Photovoltaics • Polymers • renewable energy • Solar cell • Solar cells • Solar energy • WOLED
ISBN-10 3-642-14935-9 / 3642149359
ISBN-13 978-3-642-14935-1 / 9783642149351
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99