Introduction to Complex Plasmas (eBook)
XVIII, 450 Seiten
Springer Berlin (Verlag)
978-3-642-10592-0 (ISBN)
Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science.
Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.
Preface 5
Contents 7
Contributors 15
Part I Introduction 18
Chapter 1
19
1.1 Plasmas in Nature and in the Laboratory 19
1.2 Complex Plasmas 23
1.3 Low-Temperature Plasmas and Technological Applications 25
1.4 Outline of this book 28
References 29
Part II Classical and Quantum Plasmas 30
Chapter 2
31
2.1 Introduction 32
2.1.1 Production and Destruction Mechanisms of Negative Ions 33
2.1.2 The Drift–Diffusion Approximationfor the Description of Plasma Transport 34
2.2 Ambipolar Diffusion 35
2.3 Temporal Dynamics of Negative Ion Flows in Multicomponent Plasmas 37
2.4 Afterglow in Multicomponent Plasmas and Consequent Wall Fluxes of Negative Ions 41
2.5 Steady-State Profiles of Plasmas with Negative Ions 44
2.6 The Sheath in Strongly Electronegative Gases 47
2.7 The Connection Between Plasmas with Negative Ions, Dusty Plasmas, and Ball Lightning 49
References 52
Chapter 3
54
3.1 Introduction 54
3.2 Relevant Parameters of Quantum Plasmas 56
3.3 Different States of Quantum Plasmas 59
3.4 Occurrences of Quantum Plasmas 61
3.4.1 Astrophysical Plasmas 61
3.4.2 Dense Laboratory Plasmas 61
3.4.3 Laser Plasmas 62
3.4.4 Plasmas in Condensed Matter Systems 62
3.4.5 Highly Compressed Two-Component Plasmas: Mott Effect 63
3.4.6 Ultra-Dense Plasmas in Nuclear Matter: Quark–Gluon Plasma and the Big Bang 65
3.5 Theoretical Description of Quantum Plasmas 66
3.5.1 Basic Equations 67
3.5.2 Thermodynamics of Partially Ionized Plasmas 67
3.5.2.1 Weakly Coupled Quantum Plasmas 69
3.5.2.2 Chemically Reacting Quantum Plasma 69
3.5.3 Spin Effects in Quantum Plasmas 71
3.5.4 Bose Plasmas 73
3.5.5 Plasmas of Particles Having Fermi Statistics 77
3.5.6 Quantum Kinetic Theory 79
3.5.7 More Advanced Approach: The Method of Second Quantization 81
3.5.8 Other Approaches to Quantum Plasmas 84
3.5.8.1 Bohmian Quantum Mechanics 85
3.5.8.2 Quantum Hydrodynamics 86
3.6 Conclusions 88
References 88
Chapter 4
91
4.1 Introduction 91
4.2 Time-Dependent Schrödinger Equation 92
4.2.1 1D Crank–Nicolson Method 93
4.2.1.1 Boundary Conditions 95
4.2.1.2 Absorbing Boundary Conditions 96
4.2.1.3 Initial Conditions 96
4.2.2 TDSE Solution in Basis Representation 98
4.2.2.1 Deriving a Time Evolution Scheme 99
4.2.2.2 Computation of Matrix Elements of Uij 99
4.2.3 Computational Example: Electron Scattering in a Laser Field 100
4.3 Hartree–Fock Method 101
4.3.1 Standard Approach 102
4.3.2 NEGF Approach 104
4.3.3 Example 106
4.4 Quantum Monte Carlo Methods 109
4.4.1 Metropolis Monte Carlo Method 110
4.4.2 Path-Integral Monte Carlo 112
4.5 Summary 117
References 118
Chapter 5
120
5.1 Introduction 120
5.1.1 Background 120
5.1.2 Quantum Theory of Dielectric Response 122
5.2 Quantum Effects in Normal Solid-State Plasmas 124
5.2.1 Three-Dimensional Quantum Plasma 124
5.2.2 Dielectric Properties of Low-Dimensional Systems 126
5.2.3 Dielectric Function of a Magnetized Quantum Plasma 128
5.3 Graphene 132
5.3.1 Introduction 132
5.3.2 Graphene Hamiltonian, Green's Function,and RPA Dielectric Function 134
5.3.3 Some Physical Features of Graphene 138
5.4 Summary 141
References 142
Part III Strongly Coupled and Dusty Plasmas 144
Chapter 6
145
6.1 Introduction 145
6.2 Imaging 2D Systems 146
6.2.1 Imaging Particles 146
6.2.2 Image Analysis 148
6.2.2.1 Threshold Method 149
6.2.2.2 Moment Method 149
6.2.2.3 Moment Method with Gaussian Bandpass Filter 150
6.2.2.4 Least Quadratic Kernel Method 150
6.3 Imaging 3D Systems 151
6.3.1 Scanning Video Microscopy 151
6.3.2 Color Gradient Method 152
6.3.3 Stereoscopy 153
6.3.4 Digital Holography 156
6.4 Summary and Outlook 162
References 162
Chapter 7
164
7.1 Introduction 164
7.2 Trapping of Dust Clouds 165
7.3 Formation of Finite Dust Clusters 167
7.4 Structural Transitions in 1D Dust Clusters 167
7.5 Structure of 2D Dust Clusters 169
7.6 Normal Mode Dynamics of Dust Clusters 170
7.7 Formation of 3D Dust Clusters 172
7.8 Structure of 3D Dust Clusters 174
7.9 Metastable Configurations of Yukawa Balls 176
7.10 Shell Transitions in Yukawa Balls 179
7.11 Dynamical Properties of Yukawa Balls 180
7.12 Summary 181
References 182
Chapter 8
184
8.1 Introduction 184
8.2 Variational Problem of the Energy Functional 185
8.3 Ground-State Density Profile Within Mean-Field Approximation 189
8.3.1 The Coulomb Limit and Electrostatics 189
8.3.2 General Solution 190
8.3.3 Density Profile for Harmonic Confinement 192
8.3.4 Force Equilibrium Within Yukawa Electrostatics 194
8.4 Simulation Results of Spatially Confined Dust Crystals 196
8.4.1 Ground-State Simulations 197
8.4.2 Comparison of Simulation and Mean-Field Results 199
8.5 Inclusion of Correlations by Using the Local Density Approximation 200
8.5.1 LDA Without Correlations 201
8.5.2 LDA with Correlations 204
8.5.3 Comparison of Simulation and LDA Results 206
8.6 Shell Models of Spherical Dust Crystals 207
8.7 Summary and Discussion 209
References 210
Chapter 9
211
9.1 Introduction 211
9.2 Combined PIC–MCC Approach for Fast Simulation of a Radio-Frequency Discharge at Low Gas Pressure 213
9.2.1 Combined PIC–MCC Approach 214
9.2.2 Description of the Algorithm 215
9.2.3 How Many Simulation Particles We Need? 218
9.2.4 Simulation Results of a CCRF-Discharge in Helium and Argon 219
9.3 Physical Model of Discharge Plasma with Movable Dust 225
9.3.1 Algorithm of Calculation 226
9.3.2 Ion Drag Force 228
9.3.3 Transition Between Different Modes 230
9.3.4 Dust Motion Effect 233
9.4 Conclusion 236
References 238
Chapter 10
239
10.1 Introduction 239
10.2 Basics of Molecular Dynamics Simulation 240
10.2.1 Simulation Model of Strongly Coupled Dusty Plasmas 242
10.2.2 Equations of Motion of a One-Component Plasma 244
10.2.3 Velocity Verlet Integration Scheme 246
10.2.4 Runge–Kutta Integration Scheme 247
10.3 Equilibrium Simulations: Thermodynamic Ensembles 248
10.3.1 Velocity Scaling 249
10.3.2 Stochastic Thermostats 249
10.3.3 Nosé–Hoover Thermostat 250
10.3.4 Langevin Dynamics Simulation 250
10.3.5 Dimensionless System of Units 252
10.4 Simulation of Macroscopic Systems 253
10.4.1 Potential Truncation 253
10.4.2 Electrostatic Interactions 254
10.4.3 Finding of Neighboring Particles 254
10.4.4 Periodic Boundary Conditions 255
10.5 Input and Output Quantities 257
10.5.1 Pair Distribution Function and Static StructureFactor 257
10.5.2 Transport Properties 259
10.6 Applications I: Mesoscopic Systems in Traps 259
10.6.1 Simulated Annealing 260
10.6.2 Effect of Screening 262
10.6.3 Effect of Friction 263
10.7 Applications II: Macroscopic Systems 266
10.7.1 Simulation Results 267
10.8 Conclusion 269
References 270
Part IV Reactive Plasmas, Plasma–Surface Interaction, and Technological Applications 273
Chapter 11
274
11.1 Introduction 274
11.2 Nonthermal Plasma Conditions 278
11.3 Plasma Kinetics and Plasma Chemical Reactions 279
11.3.1 Boltzmann Equation 279
11.3.2 Reaction Rate Coefficient 281
11.4 Plasma–Surface Interaction 283
11.4.1 Plasma Sheath 283
11.4.2 Surface on Floating Potential 284
11.4.3 High-Voltage Plasma Sheath, Radio-Frequency
285
11.5 Low-Pressure Oxygen rf-Plasma 287
11.5.1 Plasma Characterization 288
11.5.1.1 Electric Probe Measurement, Positive Ion Density 288
11.5.1.2 Microwave Interferometry, Electron Density 289
11.5.1.3 Ion Analysis at Discharge Electrodes (Positive and Negative Oxygen Ions) 290
11.5.1.4 Optical Emission Spectroscopy, rf-Phase-Resolved Optical Spectroscopy 292
11.5.1.5 Atomic Oxygen Ground-State Density 296
11.5.2 Interaction of Oxygen Plasma with Polymers 298
11.5.2.1 Fourier Transform Infrared Spectroscopy of Thin Polymer Films 298
11.5.2.2 Spectroscopic Ellipsometry of Thin Plasma-Treated Polymer Films 301
11.5.2.3 Mass Spectrometric Investigation of Reaction Products in Plasma/Gas Phase 302
References 303
Chapter 12
305
12.1 Introduction 305
12.2 Magnetron Discharge 306
12.3 Nucleation Processes in a Magnetron Plasma 308
12.4 Nanosize Cluster Deposition 311
12.5 Melting Temperature and Lattice Parameters of Ag Clusters 313
12.6 Rapid-Thermal Annealing (RTA) of Deposited Cluster Films 314
12.7 Evaporation of Clusters 318
12.8 Conclusions 319
References 319
Chapter 13
321
13.1 Introduction 322
13.2 Plasma Chemistry and Reaction Kinetics 325
13.2.1 Studies of Ar/H2/N2/O2 Microwave Plasmas 325
13.2.2 On the Importance of Surface Associationto the Formation of Molecules in a Recombining N2/O2 Plasma 328
13.3 Kinetic Studies and Molecular Spectroscopy of Radicals 332
13.3.1 Line Strengths and Transition Dipole Moment of CH3 332
13.3.1.1 The
332
13.3.1.2 The 2 First Hot Band 334
13.3.2 Molecular Spectroscopy of the CN Radical 336
13.4 Quantum Cascade Laser Absorption Spectroscopy for Plasma Diagnostics and Control 337
13.4.1 General Considerations 337
13.4.2 Time-Resolved Study of a Pulsed DC Discharge: NO and Gas Temperature Kinetics 339
13.4.3 Trace Gas Measurements Using Optically Resonant Cavities 341
13.4.4 In Situ Monitoring of Plasma Etch Processes with a QCL Arrangement in Semiconductor Industrial Environment 344
13.5 Summary and Conclusions 346
References 346
Chapter 14
350
14.1 Introduction 350
14.2 X-Ray Analytical Methods 352
14.2.1 Grazing Incidence X-Ray Diffractometry, Asymmetric Bragg Case 352
14.2.2 GIXD, Bragg Case, Specular Reflected 353
14.2.3 X-Ray Reflectometry 354
14.3 Examples 355
14.3.1 Characterization of ITO Films 355
14.3.2 Study of Al2O3 Formation During Microwave Plasma Treatment of Al Films in Ar–O2 Gas Mixtures 363
14.4 Summary 370
References 370
Chapter 15
371
15.1 Introduction 371
15.2 Commercially Viable, Large-Scale Plasma-Based Environmental Applications 373
15.2.1 Ozonizers 373
15.2.1.1 Historical Background 373
15.2.1.2 Ozone Properties and Ozone Applications 373
15.2.1.3 Ozone Formation in Electrical Discharges 374
15.2.1.4 Technical Aspects of Large Ozone Generators 376
15.2.1.5 Future Prospects of Industrial Ozone Generation 377
15.2.2 Electrostatic Precipitation 377
15.2.2.1 Historical Background 377
15.2.2.2 Main Physical Processes Involved in Electrostatic Precipitation 378
15.2.2.3 Large Industrial Electrostatic Precipitators 379
15.2.2.4 Summary 381
15.3 Decomposition of Volatile Organic Compounds in Microplasmas 381
15.3.1 Experimental Details 381
15.3.2 VOC Destruction Efficiency 383
15.3.3 Byproduct Formation 385
15.3.4 Kinetic Studies 386
15.3.5 Summary 389
15.4 Pulsed Electrical Discharges in Water 390
15.4.1 Background 390
15.4.2 Experimental Systems 391
15.4.3 Selected Experimental Results 393
15.4.4 Summary 395
15.5 Conclusion 395
References 396
Chapter 16
399
16.1 Introduction 399
16.2 Disturbing Side Effects of Dust Particles in Plasma Processing 400
16.3 Formation and Modification of Powder Particles in Plasmas for Various Industrial Applications 402
16.3.1 Coating of Powder Particles in a Magnetron Discharge 406
16.3.2 Deposition of Protective Coatings on Individual Phosphor Particles 411
16.3.3 Particles as Microsubstrates 414
16.4 Particles as Electrostatic Probes 417
16.4.1 Dust Particles in Front of an Adaptive Electrode 421
16.4.2 Interaction Between Dust Particles and Ion Beams 430
16.5 Particles as Thermal Probes 438
References 443
Index 447
Erscheint lt. Verlag | 29.7.2010 |
---|---|
Reihe/Serie | Springer Series on Atomic, Optical, and Plasma Physics | Springer Series on Atomic, Optical, and Plasma Physics |
Zusatzinfo | XVIII, 450 p. 225 illus., 76 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik | |
Technik | |
Schlagworte | dusty plasma • dusty plasmas • Plasma • Plasma physics • Plasma - surface interaction • Plasma technology • Quantum Plasmas • Reactive plasmas • Simulation |
ISBN-10 | 3-642-10592-0 / 3642105920 |
ISBN-13 | 978-3-642-10592-0 / 9783642105920 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich