Nuclear Medicine Radiation Dosimetry (eBook)

Advanced Theoretical Principles
eBook Download: PDF
2010 | 1. Auflage
XXXII, 610 Seiten
Springer London (Verlag)
978-1-84882-126-2 (ISBN)

Lese- und Medienproben

Nuclear Medicine Radiation Dosimetry -  Brian J McParland
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: Growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, Design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and dosimetry which require the user to have a thorough understanding of the theoretical principles used in such algorithms, their appropriateness and their limitations, increasing regulatory scrutiny of the radiation dose burden borne by nuclear medicine patients in the clinic and in the development of new radiopharmaceuticals, thus requiring more accurate and robust dosimetry evaluations. An element common to all four factors is the need for precise radiation dosimetry in nuclear medicine, which is fundamental to the therapeutic success of a patient undergoing radionuclide therapy and to the safety of the patients undergoing diagnostic nuclear medicine and PET procedures.

As the complexity of internal radiation dosimetry applied to diagnostic and therapeutic nuclear medicine increases, this book will provide the theoretical foundations for: enabling the practising nuclear medicine physicist to understand the dosimetry calculations being used and their limitations, allowing the research nuclear medicine physicist to critically examine the internal radiation dosimetry algorithms available and under development; and providing the developers of Monte Carlo codes for the transport of radiation resulting from internal radioactive sources with the only comprehensive and definitive.

Brian J. McParland, BASc MSc PhD currently heads a commercial medical physics group based in the UK, Norway and India supporting clinical trials developing diagnostic radiopharmaceuticals, vascular contrast media and in vivo optical imaging agents. He is also an elected Fellow of the Canadian College of Physicists in Medicine, the Institute of Physics and Engineering in Medicine, UK and the Institute of Physics, UK.


Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: Growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, Design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and dosimetry which require the user to have a thorough understanding of the theoretical principles used in such algorithms, their appropriateness and their limitations, increasing regulatory scrutiny of the radiation dose burden borne by nuclear medicine patients in the clinic and in the development of new radiopharmaceuticals, thus requiring more accurate and robust dosimetry evaluations. An element common to all four factors is the need for precise radiation dosimetry in nuclear medicine, which is fundamental to the therapeutic success of a patient undergoing radionuclide therapy and to the safety of the patients undergoing diagnostic nuclear medicine and PET procedures. As the complexity of internal radiation dosimetry applied to diagnostic and therapeutic nuclear medicine increases, this book will provide the theoretical foundations for: enabling the practising nuclear medicine physicist to understand the dosimetry calculations being used and their limitations, allowing the research nuclear medicine physicist to critically examine the internal radiation dosimetry algorithms available and under development; and providing the developers of Monte Carlo codes for the transport of radiation resulting from internal radioactive sources with the only comprehensive and definitive.

Brian J. McParland, BASc MSc PhD currently heads a commercial medical physics group based in the UK, Norway and India supporting clinical trials developing diagnostic radiopharmaceuticals, vascular contrast media and in vivo optical imaging agents. He is also an elected Fellow of the Canadian College of Physicists in Medicine, the Institute of Physics and Engineering in Medicine, UK and the Institute of Physics, UK.

Preface 8
Acknowledgments 12
Contents 14
Glossary and Abbreviations 22
Chapter 1: The Role of Radiation Dosimetry in Nuclear Medicine 34
Introduction 34
Diagnostic Nuclear Medicine 35
Radiation Detector Efficiency 35
Radionuclide 35
Radiopharmaceutical Design 36
Clinical Imaging Practice 36
Dose Reference Levels 37
Therapeutic Nuclear Medicine 38
References 39
Chapter 2: Theoretical Tools 41
Introduction 41
Physical Units 43
Mathematical Notations 43
Vector Notation 43
Complex Conjugation 44
Hermitian Conjugation 44
Adjoint Operator 44
Relativistic Kinematics of a Two-Body Elastic Collision 44
Introduction 44
Kinetic Energy of the Recoil Particle 45
Derivation 45
Maximum Recoil Kinetic Energy 45
Massive Projectile and Light Target 45
Projectile and Target of Equal Masses 46
Kinetic Energy of the Scattered Projectile 46
Time-Dependent Perturbation Theory 47
Introduction 47
Transition Rate 48
Quantum Scattering Theory 51
Introduction 51
Scattering Amplitude 52
Scattering Cross Sections 55
Phase-Shift Analysis 56
Optical Theorem 59
Dirac´s Equation 60
Introduction 60
Derivation of Dirac´s Equation 61
Chapter 3: Nuclear Properties, Structure, and Stability 63
Introduction 63
Characteristics of Atomic Nuclei: Part I 65
Introduction 65
Fundamental Particles and Interactions 66
Quantum Numbers 69
Introduction 69
Electric Charge 69
Baryon Number 69
Lepton Number 69
Spin 69
Parity 70
Isotopic Spin 70
Nuclear Constituents: Nucleons 72
Categorizations of Nuclei 72
Isotopes 72
Isobars 72
Isotones 72
Isomers 73
Nuclear Mass 73
Atomic Mass Unit 73
Determination of Nuclear Mass 73
Nuclear Size 75
Introduction 75
Nuclear Size Derived from Nuclear Binding Energies 76
Nuclear Size Derived from Charged Particle Scattering 77
Introduction 77
Kinematics 78
Elastic Coulomb Scatter 78
Spin-0 Projectiles 78
Spin-1/2 Projectiles 80
Nuclear Scattering Form Factors 83
Nuclear Density 89
Nucleon Dynamics: The Fermi Gas Model 89
Phenomenology of Nuclear Stability 92
Introduction 92
Average Binding Energy per Nucleon 92
Nucleon Separation Energy 93
Characteristics of Stable Nuclei 94
Liquid-Drop Model and the Semi-Empirical Nuclear Mass Formula 95
Introduction 95
Nuclear Binding Energy 96
Binding Energy Terms 96
Volume Term 96
Surface Term 96
Coulomb Term 97
Symmetry Term 97
Paired Nucleons Term 97
Contributions of Binding Energy Terms 97
Mass Parabolae 98
Prediction of Stable Isobars 100
Nuclear Shell Model 101
Introduction 101
Magic Nuclei 102
Calculation of Nucleon Orbitals 102
Characteristics of Atomic Nuclei: Part II 106
Nuclear Moments 106
Nuclear Magnetic Dipole Moments 106
Introduction 106
Spin-Orbit Angular Momenta Coupling 107
Magnetic Dipole Moment 107
Nucleon Magnetic Dipole Moments 109
Nuclear Magnetic Dipole Moments 110
Nuclear Electric Quadrupole Moments 111
Introduction 111
Multipole Expansion of the Electric Potential 111
Electric Quadrupole Moment 114
Isomers 118
The Deuteron 119
References 121
Chapter 4: Radioactive Decay: Microscopic Theory 122
Introduction and History 122
a Decay 125
Introduction 125
Kinematics of a Emission 126
Kinetic Energy of the a Particle 126
Energy Spectrum: Fine Structure 128
Barrier Penetration 128
Introduction 128
One-Dimensional Rectangular Barrier 129
Three-Dimensional Barrier 132
Gamow Factor 132
Angular Momentum 133
Estimation of a Decay Half-Life 134
The Weak Interaction: beta Decay and Electron Capture 135
Introduction 135
Kinematics of beta Decay and Electron Capture 139
Neutron beta Decay 139
Nuclear beta Decay 140
Introduction 140
Nuclear beta- Decay 141
Nuclear beta+ Decay 141
Electron Capture 142
Summary of beta Decay and Electron Capture Kinematics 142
Fermi Theory of beta Decay: Part I 143
Introduction 143
Nuclear beta Decay 143
Introduction 143
Matrix Element 143
Phase Space Factor 144
Energy Spectra 145
Kurie Plot 146
Decay Constant 147
Electron Capture 149
Selection Rules for beta Decay 150
Introduction 150
Selection Rules in Nuclear beta decay 151
Introduction 151
Allowed Nuclear beta decays 152
Forbidden Nuclear beta decays 153
Fermi Theory of beta Decay: Part II 153
Four-Fermion Interaction Vertex 153
Evidence for Parity Nonconservation in Weak Interactions 155
The theta-tau Dilemma 155
Parity Nonconservation in beta Decay 156
Neutrino Helicity 157
V-A Interaction 160
gamma Transitions and Internal Conversion 161
Introduction 161
gamma Decay 161
Kinematics 161
Multi-Pole Radiation 162
Introduction 162
Multi-Pole Expansion in Free Space 162
Energy and Angular Momentum of Multi-Pole Radiation 166
Selection Rules for Multi-Pole Radiation 168
Angular Distributions of Multi-Pole Radiation 169
Multi-Pole Expansion With Source Present 170
Transition Rates for Multi-Pole Radiation 172
Internal Conversion 174
Introduction 174
Calculation of the Internal Conversion Coefficient 176
Introduction 176
Calculation of the Matrix Element 176
Calculation of the Phase Space Factor 177
Internal Conversion Transition Rate 177
0 0 Transitions 178
Nuclear Isomerism 178
Introduction 178
References 179
Chapter 5: Radioactive Decay: Macroscopic Theory 181
Introduction 181
Physical Decay Constant and Activity 182
Physical Half-Life, Effective Half-Life, and Mean Lifetime 183
Physical Half-Life 183
Effective Half-Life 183
Mean Lifetime 183
Variability of the Physical Decay Constant 184
Specific Activity 184
Radioactive Parents and Progeny 185
General Case 185
Parent Half-Life Much Greater than that of Daughter 186
Parent Half-Life Greater than that of Daughter 186
Daughter Half-Life Greater than that of Parent 187
Decay Branching 187
Applications 190
Introduction 190
Measurement of Radioactivity 190
Correction for Radioactive Decay During Measurement 190
Background Correction 191
Reference Standard 192
Decision Theory 192
Introduction 192
Qualitative Detection and Quantitative Determination 193
Detector Dead Time 196
Paralyzable Response 196
Nonparalyzable Response 197
Verification of Statistical Distribution of Measured Data 198
References 199
Chapter 6: Photon Interactions with Matter 201
Introduction 201
Photon-Conserving Interactions 203
Thomson Scatter 203
Rayleigh (Coherent) Scatter 206
Compton (Incoherent) Scatter 209
Introduction 209
Compton Kinematics 209
Klein-Nishina Cross Section 212
Effects of Atomic Binding on Compton Scatter 216
Photon Nonconserving Interaction 219
Photoelectric Absorption 219
Introduction 219
Kinematics 219
Cross Section 219
Phase-Space Calculation 220
Matrix Element Calculation 221
Transition Probability and Cross Section 222
Atomic Relaxation 224
Introduction 224
Radiative Transitions 224
Nonradiative Transitions 228
Photon Interaction Coefficients 230
Introduction 230
Mass Attenuation Coefficient 230
Mass Energy-Transfer Coefficients 232
Mass Energy-Absorption Coefficients 234
Effective Atomic Number 236
References 236
Chapter 7: Charged Particle Interactions with Matter 238
Introduction 239
Coulomb Scattering With no Energy Transfer to the Medium 241
Introduction 241
Elastic Coulomb Scatter 242
Spin-0 Projectiles 242
Unscreened Potential (Rutherford Scatter) 242
Screened Potential 242
Mean Free Path Between Elastic Scatters 243
Elastic Scatter from an Atom 243
Comparison of Atomic Scattering Results 247
Spin-1/2 Projectiles 248
Coulomb Scattering With Energy Transfer to the Medium 248
Introduction 248
Rutherford Collision Formula 248
Soft Collision Stopping Power 251
Introduction 251
Bohr Theory 251
Introduction 251
Impact Parameter 251
Energy Transfer to a Harmonically-Bound Electron 253
Equation of Motion of Target Electron 253
Energy Transfer as a Function of the Electric Field 254
Calculation of the Electric Field 256
Bohr Soft Collision Mass Stopping Power 258
Bethe Theory 260
Introduction 260
Collision Kinematics 260
Bethe Soft Collision Cross Section 261
Bethe Soft Collision Stopping Power 265
Comparison of Bohr and Bethe Soft Collision Theories 265
Hard Collision Stopping Power 266
Introduction 266
Differential Cross Sections in Energy Transfer 266
Massive Projectile Electron Scatter (mme) 266
Spin-0 266
Spin-1/2 267
Spin-1 267
Electron-Electron (Møller) Scatter 267
Electron-Positron (Bhabha) Scatter 268
Hard Collision Stopping Powers 269
Massive Projectiles (m> >
Electron and Positron Projectiles 269
Combined Mass Hard and Soft Collision Stopping Powers 270
Introduction 270
Massive Projectiles (m> >
Electron and Positron Projectiles 272
Mean Excitation Energy 274
Stopping Number 276
Introduction 276
Atomic Electron Shell Correction 277
Barkas Correction Term 278
Bloch Correction Term 278
Complete Stopping Number (excluding density effect) 279
Effect of Medium Polarization Upon the Stopping Power 280
Introduction 280
Electronic Polarization 280
Electromagnetic Fields in a Dielectric Medium 282
Energy Loss in a Dielectric Medium 284
Sternheimer-Peierls Parameterization of the Density/Polarization Effect 290
Cerenkov Radiation 291
Empirical Determination of Mean Excitation Energy and Shell Correction Factor 294
Mean Energy Required to Create an Ion Pair 295
Restricted Mass Collision Stopping Power for Electrons 297
Summary of the Mass Collision Stopping Power 297
Stochastic Collision Energy Loss: Energy Straggling 298
Introduction 298
One-Dimensional Continuity Equation 299
Asymmetric Probability Distribution Functions for DeltaE 304
Introduction 304
Vavilov Probability Distribution Function 304
Gaussian Limit to the Vavilov Probability Distribution Function 307
Landau Limit to the Vavilov Probability Distribution Function 309
Practical Methods of Calculating the Vavilov pdf 310
Introduction 310
Edgeworth Series 311
Fourier Series Solution 311
Distorted Log-Normal Distribution 312
Vavilov pdf for Electron Projectiles 312
Atomic Electron Binding Effects 312
Multiple Elastic Scattering 312
Introduction 312
Multiple Elastic Scattering Theory 313
Introduction 313
Fermi-Eyges Theory 313
Scattering Power 317
Introduction 317
Spin-0 Projectile Scattering 318
Mott Cross Section 318
Contributions to the Scattering Power from Atomic Electrons 319
Specific Electron Multiple Scattering Theories 320
Introduction 320
Goudsmit-Saunderson Theory 320
Molière Theory 322
Bremsstrahlung 328
Introduction 328
Classical Electron-Atom Bremsstrahlung Theory 328
Introduction 328
Liénhard-Wiechert Retarded Potentials 328
Radiation Emission 330
Electromagnetic Fields at a Distance 330
Radiated Power: Larmor Formula 331
Classical Radiative Stopping Power 332
Angular Distribution of Radiation Emission 333
Spectrum of Radiation Emission 334
Nonrelativistic Case 334
Relativistic Case: Weizsäcker-Williams (Virtual Quanta) Method 335
Quantum Electron-Nuclear Bremmstrahlung: Bethe-Heitler Theory 337
Introduction 337
Derivation of the Triple Differential Cross Section 337
Interaction 337
Phase-Space Factor 338
S-Matrix Calculation 338
Triple Differential Cross Section in the Soft Photon Limit 339
Bethe-Heitler Bremsstrahlung Differential Cross Section in Photon Energy 340
Screening Effects 340
Deviations from the Born Approximation 340
Further Considerations 340
Electron-Electron Bremsstrahlung 341
Positron-Nucleus Bremsstrahlung 341
Mass Radiative Stopping Power for Electrons 342
Radiation Length 343
Collision and Radiative Stopping Powers: A Summary 343
Range of Charged Particles 345
Introduction 345
Continuous Slowing-Down Approximation (CSDA) Range 345
Projected Range 346
Range Straggling 347
Positron-Electron Annihilation 347
Introduction 347
Annihilation Probabilities and Cross Sections 348
General Features 348
Positron Annihilation on a Bound Atomic Electron 349
Positron Annihilation on a Free Electron 349
Positronium 351
References 351
Chapter 8: Radiation Fields and Radiometrics 354
Introduction 354
Radiation Fields 355
Phase Space 355
Particle Number, Radiant Energy, and Particle Radiance 355
Scalar Radiometric Quantities 356
Particle Flux Density (Particle Fluence Rate) 356
Particle Fluence 356
Energy Flux Density (Energy Fluence Rate) 356
Energy Fluence 356
Vector Radiometric Quantities 356
Vector Radiance 356
Vector Particle Flux Density (Vector Particle Fluence Rate) 357
Vector Particle Fluence 357
Vector Energy Flux Density (Vector Energy Fluence Rate) 357
Vector Energy Fluence 357
Energy Exchange 357
Introduction 357
Stochastic Quantities 357
Energy Deposit 357
QDeltam< 0
QDeltam=0 358
QDeltam> 0
Energy Imparted 359
Energy Transferred 359
Specific Energy 359
Lineal Energy 359
Non-Stochastic Quantities 360
Kerma 360
Air Kerma-Rate Constant 360
Absorbed Dose 360
Exposure 360
References 361
Chapter 9: Radiation Dosimetry: Theory, Detection, and Measurement 362
Introduction 362
Radiation Dosimetry: Theory 363
Primary and Scattered Radiation Fields 363
Kerma and Absorbed Dose 364
Introduction 364
Radiation-Field Based Definitions 365
Kerma, Absorbed Dose, and Charged Particle Equilibrium 366
Kerma Per Unit Photon Fluence 366
Radiation Equilibria 367
Introduction 367
Complete Radiation Equilibrium 368
Charged-Particle Equilibrium 369
Absorbed Fraction 369
Collision Kerma and Charged Particle Equilibrium 370
Collision Kerma and Transient Charged Particle Equilibrium 371
In-Air Collision Kerma and Exposure 374
Air Kerma-Rate Constant 374
Fano´s Theorem 374
Absorbed Doses at Interfaces Between Different Media 375
Methods of Calculating the Radiation Flux 377
Introduction 377
Analytical Solutions for Geometric Radiation Sources 377
Introduction 377
Point Source 378
Linear Source 378
Disc Source 380
An Overview of Monte Carlo Methods 382
Introduction 382
Random Number Generator 383
Analog Sampling 384
Variance Reduction 385
Monte Carlo Codes: Examples 386
MCNP 386
GEANT4 386
EGS 386
Buildup Factor 386
Introduction 386
Methods of Determining the Buildup Factor 387
Measurement 387
Analytical 388
Monte Carlo 388
Analytical Representations of the Buildup Factor 388
Introduction 388
Taylor Formula 389
Geometric Progression Formula 389
Meisberger Formula 389
Leichner Formula 389
Kwok Formula 389
Effective Attenuation Coefficient 389
Reciprocity Theorem 390
Introduction: Point Source and Target 390
Distributed Source and Target Regions 391
Reciprocity Theorem Applied to Heterogeneous Media 392
Dose Point Kernels 392
Cavity Theory 393
Introduction 393
Bragg-Gray Theory 394
Introduction 394
Bragg-Gray Relation and Conditions 394
A Brief Overview of Microdosimetry 395
Introduction 395
Linear Energy Transfer and Lineal Energy 397
Introduction 397
LET Probability Distribution Functions 397
Validity Conditions of LET 398
Lineal Energy 399
Specific Energy 399
Radiation Dosimetry: Detection and Measurement 400
Introduction 400
Gaseous Radiation Detectors 400
Introduction 400
The Theory of Ionization in Gases 402
Magnitude of Initial Ionization Produced and the Fano Factor 402
Ion and Electron Motions in a Gas With an Electric Field Applied 403
M< 1 Regions: Ionization Chamber
M> 1 Regions: Proportional Chamber and Geiger-Müller Counter
Introduction 406
Electric Field Requirements for Gas Multiplication 406
Ionization and Space-Charge Effects 407
Gas Multiplication 408
Fill Gas Requirements for the Proportional Region 409
Geiger-Müller Region 410
Fill Gasses in the Geiger-Müller Region 411
Applications of Gaseous Radiation Detectors in Nuclear Medicine 412
Ionization Chambers 412
Proportional Chambers 413
Geiger-Müller Counters 415
Scintillation Detectors 415
Introduction 415
Scintillation Theory 416
Inorganic Scintillators 416
Organic Scintillators 418
Light Collection 419
Light Conversion and Electron Multiplications 419
Photocathode 419
Dynode Chain 420
Position-Sensitive Photomultiplier Tubes 420
Scintillation Spectroscopy 421
MOSFET 422
Thermoluminescent Dosimetry 423
Introduction 423
Theory of Thermoluminescence 424
Thermoluminescent Dosimetry Materials and Considerations 426
References 427
Chapter 10: Biological Effects of Ionizing Radiation 429
Introduction 430
Radiobiology of the Mammalian Cell 431
Introduction 431
Structure of the Mammalian Cell 431
Cellular Structure 431
Types of Mammalian Cells 431
DNA 432
Chromatin, Chromosomes, and Chromatids 432
Proliferation and Cell Cycle 432
Radiation-Induced Damageto the Cell 433
Introduction 433
Mechanisms of Radiation-Induced Damage 434
Indirect Effect 434
Direct Effect 435
Relative Contributions 435
Radiation-Induced DNA Lesions 436
Introduction 436
Base Alterations 436
Single-Strand Breaks 436
Double-Strand Breaks 436
Summary 437
Chromosome and Chromatid Aberrations 437
Lethal 437
Dicentric 437
Centric Ring 437
Anaphase Bridge or Interarm Aberration 437
Nonlethal 438
Symmetric Translocation 438
Radiation-Induced Cell Death 438
Introduction 438
Mitotic Death 439
Interphase Death and Apoptosis 439
Bystander Effect 439
Categories of Radiation-Induced Cell Damage 440
Introduction 440
Sublethal Damage 440
Potentially Lethal Damage 440
Germ-Cell Damage 441
Introduction 441
Oogenesis 441
Spermatogenesis 441
In Vitro Cell Survival Curves 441
Introduction 441
Single-Target Model 442
Multiple-Target Models 443
Modified Multiple-Target Model 444
Linear-Quadratic Model 444
Radiation Sensitivity of Mammalian Cells 445
Introduction 445
Cell Cycle and Age 446
Relative Biological Effectiveness 446
Linear Energy Transfer 446
Absorbed Dose Rate 447
Hypoxia 448
RBE and OER as Functions of LET 448
Cell Proliferation Kinetics and Radiosensitivity 450
Repair of Radiation-Induced Damage 450
Introduction 450
Repair of Sublethal Damage 451
The Four ``Rs´´ of Radiobiology 451
Radiation-Induced Mutations 452
Introduction 452
Oncogene Activation 453
Inactivation of Tumor-Suppressor Genes 453
Germ-Cell Mutations 453
The Linear-Quadratic Dose-Response Model for Low-LET Radiation 454
Introduction 454
DSB Repair Kinetics 454
First-Order Repair Kinetics 454
Binary DSB Misrepair 454
Kinetics of DSB Induction, Repair and Misrepair, and Cell Survival 455
Lea-Catcheside Dose-Protraction Factor 455
Constant Absorbed Dose Rate for Finite Irradiation Time 456
Exponentially-Decreasing Absorbed Dose Rate 456
Biologically Equivalent Dose 457
Effects of Repopulation 458
Applications of the Linear-Quadratic Model to Internal Radiation Dosimetry 458
Introduction 458
a/beta Ratios 459
Human Somatic Effects of Ionizing Radiation 459
Introduction 459
Epidemiological Sources of Human Data 461
Nuclear Bombings of Hiroshima and Nagasaki 461
Medical Exposures: Examples 462
Secondary Neoplasia in Radiotherapy Patients 462
Cancers Arising from Diagnostic Imaging Procedures 464
Occupational Exposures 465
Miners 465
Radiologists 465
Nuclear Workers 465
Radium Dial Painters 465
Chernobyl 465
Radiation Pathologies 466
Introduction 466
Cerebrovascular Syndrome 466
Gastrointestinal Syndrome 466
Hematopoietic Syndrome 467
Deterministic (Non-Stochastic) Effects 467
Introduction 467
Erythema and Epilation 467
Sterilization 468
Cataractogenesis 468
Stochastic Effects 468
Introduction 468
Radiation Carcinogenesis 469
Leukemia 469
Breast Cancer 469
Thyroid Cancer 470
Hereditary Effects 470
Antenatal Effects 471
Introduction 471
Embryonic Death 472
Microcephaly and Mental Retardation 472
Childhood Cancer 472
Radiation Risks Presented to the Diagnostic Nuclear Medicine Patient 472
Introduction 472
ICRP Recommendations 473
Equivalent (Radiation Weighted) Dose 473
Introduction 473
Radiation Weighting Factor, wR 473
Effective Dose 474
Introduction 474
Tissue Weighting Factor, wT 474
Additional Considerations 475
Gonadal Absorbed Dose 476
Esophagus/Thymus Absorbed Dose 476
Colon Absorbed Dose 476
Use of the Effective Dose in Nuclear Medicine 477
Radiobiology Considerations for the Therapeutic Nuclear Medicine Patient 477
Introduction 477
Tumor Control Probability 477
Normal Tissue Complication Probability 477
Selection of Isotopes forRadionuclide Therapy 478
References 479
Chapter 11: Nuclear Medicine Dosimetry 482
Introduction 482
Development of Radiopharmaceuticals 483
Introduction 483
Preclinical 484
Phase I 484
Phase II 485
Phase III 485
Clinical Nuclear Medicine Applications 486
Diagnostic Radiopharmaceuticals 486
Therapeutic Radiopharmaceuticals 486
History of Nuclear Medicine Radiation Dosimetry 486
Introduction 486
Early Biodistribution Measurements 488
Introduction 488
ADME 488
Administration 488
Distribution 489
Metabolism 489
Excretion 489
Excretion of Administered Radium 489
In Vivo Measurement of Blood Circulation Time 489
Radionuclide Tracers: de Hevesy 490
Commentary 490
Marinelli-Quimby-Hine Method of Internal Radiation Dosimetry Calculations 490
Modern Methods of Nuclear Medicine Radiation Dosimetry 492
Introduction 492
Sources of Data 493
Introduction 493
Radiation and Nuclear Data 493
Anatomical and Physiological Data 493
MIRD Schema 493
Introduction 493
The Fundamental MIRD Equation 494
Derivation of the Fundamental MIRD Equation 494
Evaluation of the S-Factor 496
Absorbed Dose Contributions from beta-Particle Bremsstrahlung 496
Normalized Cumulated Activity 498
Matrix-Vector Representation of the Fundamental MIRD Equation 498
Variations in S-factor Values Due to Changes in Regions´ Masses 499
MIRD Source and Target Regions 500
ICRP Method 500
Suborgan Dimension Calculations 501
Internal Radiation Dosimetry Calculation Software 501
Introduction 501
MIRDOSE 501
OLINDA/EXM 502
OEDIPE 502
AIDE 502
PLEIADES 502
MABDOSE 502
MINERVA 502
CELLDOSE 502
RADAR 503
References 503
Chapter 12: Anthropomorphic Phantoms and Models of Biological Systems 505
Anthropomorphic Whole-Body Phantoms 505
Introduction 505
Reference Man 507
Introduction 507
ICRP Reference Man 507
Non-Western Reference Men 507
Stylized Whole-Body Phantoms 508
Introduction 508
Brownell-Ellet-Reddy Phantoms 508
Snyder and Snyder-Fisher Phantoms 508
Oak Ridge National Laboratory Phantom Series 509
Introduction 509
Cristy-Eckerman Phantoms 509
Stabin Phantoms of the Female Adult and the Pregnant Female 509
Non-Western Populations 509
Voxellated (Tomographic) Whole-Body Phantoms 510
Introduction 510
Construction Methods 510
Zubal Phantoms 510
GSF Phantom Series 511
University of Florida Pediatric Phantom Series 511
NORMAN Whole-Body Phantom 511
MAX and FAX Whole-Body Phantoms 511
VIP-MAN Whole-Body Phantom 512
Non-Western Populations 512
Introduction 512
Japanese Phantoms 512
Korean Phantoms 512
Chinese Phantom (CNMAN) 512
Hybrid Phantoms 512
Models of Biological Systems 513
Introduction 513
Respiratory System 513
Introduction 513
Anatomy 513
ICRP Models of the Respiratory System 514
ICRP Publication 30 Model 514
ICRP Publication 66 Model 514
MIRD Report 18 Ventilation Model 515
Introduction 515
Continuous Flow 516
Rebreathing 516
Aerosol 516
Gastrointestinal Tract 516
Introduction 516
Anatomy 517
ICRP Publication 30 Model 518
ICRP Publication 100 Model 522
Intestinal Wall as a Source Region 523
Kidney 524
Introduction 524
Anatomy 524
MIRD Renal Models 525
MIRD Pamphlet 5 and Revision 525
MIRD Pamphlet 19 Model 525
Other Renal Models 525
McAfee Model 525
Blau Model 525
Cristy-Eckerman Model 525
Radiobiology Considerations 525
Urinary Bladder 526
Introduction 526
Anatomy 526
Static Urinary Bladder Model 526
Dynamic Urinary Models: The Cloutier Model 527
Derivation 527
Urinary Bladder Voiding Interval, TV 528
Other Dynamic Models of the Urinary Bladder 530
Introduction 530
Snyder and Ford Model 530
MIRD Pamphlet 14 and 14 (Revised) Models 530
Head and Brain 530
Introduction 530
MIRD Pamphlet 15 Model 530
Cardiac Wall and Contents 531
Models 531
Isolating Activities in Cardiac Wall and Contents 531
Bone and Red Bone Marrow 531
Introduction 531
Anatomy and Histology 531
Skeleton 531
Bone 532
Bone Marrow 533
Bone and Bone Marrow Models 535
Spiers´ Models 535
Geometrical Models 535
MIRD 11 Model 535
ICRP Publication 30 Model 535
Eckerman and Stabin Model 536
Bouchet Model 537
Comparison of Models of Eckerman and Stabin and Bouchet 537
Endosteum Thickness 538
Red Bone Marrow Dosimetry 539
Peritoneal Cavity 539
Tumors (Spheres) 539
Prostate Gland 539
Rectum 539
References 540
Chapter 13: The Biodistribution (I): Preclinical 544
Introduction 544
Ethical and Regulatory Requirements of Preclinical Research 545
Means of Acquiring Preclinical Biodistribution Data 546
Introduction 546
Dissection 546
Preclinical Imaging 547
Data Acquisition Times 547
Sample Sizes 548
Animal Phantoms 548
Introduction 548
Examples of Animal Phantoms 548
Allometric Scaling of Animal Biodistribution Data to the Human 549
Introduction 549
b=0 550
k=1/mWB and b=1 550
Metabolic Rate Scaling 552
Combined Organ Mass and Metabolic Rate Scalings 553
Discussion 553
Permeability or Blood Flow Transfer 553
Sum of Interspecies-Scaled Normalized Cumulated Activities 554
Relative Organ Mass Scaling 554
Metabolic Rate Scaling 554
Combined Relative Organ Mass and Metabolic Rate Scaling 555
Validation 555
References 555
Chapter 14: The Biodistribution (II): Human 557
Introduction 557
Data Collection 558
Introduction 558
Source Regions: Definitionand Segmentation 558
Data Acquisition Times 559
Image-Based Data 559
Assay-Based Data 560
Introduction 560
Whole Blood and Plasma 561
Excreta 561
Sample Size 561
Nonimaging Quantification Methods 561
Introduction 561
In Vivo Nonimaging Techniques 562
Thermoluminescent Dosimetry 562
MOSFET 562
Scintillator Probe 562
Other Means 563
In Vitro Measurements 563
Introduction 563
Whole Blood 563
Plasma 564
Urine 564
Feces 564
Imaging Quantification Methods 565
Introduction 565
Single-Photon-Emitting Radionuclides 565
Conjugate-View Planar Scintigraphy 565
Method 565
Dead-Time Correction 567
Transmission Factor 568
Self-Attenuation Correction Factor 568
Scatter Correction 569
Introduction 569
Photon Energy-Discrimination Methods 570
Buildup Factor Methods 572
Background Correction Methods 573
Simple Subtraction 573
Bilinear Interpolation 573
Cauchy Integral Method 574
Correction for Over-Subtraction (I) Thomas Method 574
Correction for Over-Subtraction (II) Buijs Method 575
Correction for Over-Subtraction (III) Kojima Method 575
Overlapping Regions of Activity 575
Collimator Selection 576
Validation of the Conjugate-View Method 576
Quantitative SPECT for Dosimetry Calculations 577
Introduction 577
Scatter Compensation 577
Attenuation Correction 578
Reconstruction 578
Positron-Emitting Radionuclides 580
Introduction 580
Photon Detection in PET 580
Event Types 580
Random Events 582
Scatter Events 583
Introduction 583
Performance Metrics 584
Dead-Time Correction 584
Data Acquisition and Corrections in PET 585
Two-Dimensional and Three-Dimensional Acquisition Modes 585
Attenuation Correction 586
Normalization 587
Biodistribution Acquisitions with PET 587
PET Scanner Characteristics Relevant to Biodistribution Acquisitions 587
Whole-Body PET Acquisitions for Biodistribution and Dosimetry 588
Biodistribution Evaluation from PET Images 589
Radiation Dosimetry of Positron-Emitting Radionuclides 589
Imaging of Bremsstrahlung from beta-Emitting Radionuclides and Activity Quantification 591
Red Bone Marrow Activity 591
Introduction 591
In Vivo Imaging Estimation of Red Bone Marrow Activity 592
In Vitro Estimation of Red Bone Marrow Activity 592
Estimation of Red Bone MarrowAbsorbed Dose 594
References 595
Chapter 15: The Biodistribution (III): Analysis 599
Introduction 599
Normalized Cumulated Activity 599
Introduction 599
Analytical Fits to Activity Data 600
Introduction 600
Multiexponential Functions 600
Introduction 600
Least-Squares Analysis 600
Exponential Stripping 602
Nonmonotonic Biexponential/Gamma Variate 602
Numerical Methods 603
Extrapolation Beyond the Last Time Point 604
Uncertainty Analysis of the MIRD Formalism 605
Introduction 605
Sources of Uncertainty and Variability 605
Introduction 605
Uncertainty in Nuclear Decay Data 605
Uncertainty in the Derived Cumulated Activity Value 606
Uncertainty in Anatomic Modeling 607
References 607
Chapter 16: The Ethics of Using Human Subjects in Clinical Trials Involving Radiopharmaceuticals 609
Introduction 609
Human Subjects in Biomedical Research: General Concepts 610
Introduction 610
Declaration of Helsinki 610
World Health OrganizationRecommendations 611
Practical Considerations 611
Magnitudes of Risks Associatedwith Nuclear Medicine Research 612
Summary 613
References 613
Chapter 17: The Future of Nuclear Medicine Radiation Dosimetry 614
Introduction 614
Single-Photon Radionuclide Imaging Technology 614
Reference Anthropomorphic Phantoms in Diagnostic Nuclear Medicine Radiation Dosimetry 615
Patient-Specific Radionuclide Therapy Planning 615
New Radionuclide Delivery Vectors 615
New Means of In Vivo Radiation Dosimetry Measurement 616
New Estimates of Radiation Risk 616
References 616
Appendix 618
Appendix A Nuclear Form Factor for a Gaussian Charge Distribution 618
Appendix B Nuclear Form Factor for the Woods-Saxon Charge Distribution 620
Appendix C Pair Production Energy Threshold 622
Index 624

Erscheint lt. Verlag 3.7.2010
Zusatzinfo XXXII, 610 p.
Verlagsort London
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Nuklearmedizin
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte dosimetry • Nuclear Medicine • positron emission tomography (PET) • Radiation
ISBN-10 1-84882-126-3 / 1848821263
ISBN-13 978-1-84882-126-2 / 9781848821262
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Basiswissen und klinische Anwendung

von Markus Dietlein; Klaus Kopka; Matthias Schmidt

eBook Download (2023)
Thieme (Verlag)
144,99
Basiswissen und klinische Anwendung

von Markus Dietlein; Klaus Kopka; Matthias Schmidt

eBook Download (2023)
Georg Thieme Verlag KG
144,99