System Earth via Geodetic-Geophysical Space Techniques (eBook)

eBook Download: PDF
2010 | 2010
XX, 596 Seiten
Springer Berlin (Verlag)
978-3-642-10228-8 (ISBN)

Lese- und Medienproben

System Earth via Geodetic-Geophysical Space Techniques -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Our planet is currently experiencing substantial changes due to natural phen- ena and direct or indirect human interactions. Observations from space are the only means to monitor and quantify these changes on a global and long-term p- spective. Continuous time series of a large set of Earth system parameters are needed in order to better understand the processes causing these changes, as well as their interactions. This knowledge is needed to build comprehensive Earth s- tem models used for analysis and prediction of the changing Earth. Geodesy and geophysics contribute to the understanding of system Earth through the observation of global parameter sets in space and time, such as tectonic motion, Earth surface deformation, sea level changes and gravity, magnetic and atmospheric elds. In the framework of the German geoscience research and development p- gramme GEOTECHNOLOGIEN, research projects related to the theme 'Observing the Earth System from Space' have been funded within two consecutive phases since 2002, both covering 3 years. The projects address data analysis and model development using the satellite missions CHAMP, GRACE, GOCE and comp- mentary ground or airborne observations. The results of the rst phase projects have been published in the Springer book, titled 'Observation of the Earth System from Space', edited by Flury, Rummel, Reigber, Rothacher, Boedecker and Schreiber in 2006. The present book, titled 'System Earth via Geodetic-Geophysical Space Techniques' summarizes in 40 scienti c papers the results of eight coordinated research projects funded in the second phase of this programme (2005-2008).

Preface 5
Contents 7
Contributors 12
Part I CHAMP and GRACE 20
More Accurate and Faster Available CHAMP and GRACE Gravity Fields for the User Community 22
1 Introduction 22
2 Gravity Field Determination from Analysis of High-Low SST Data 25
3 Main Results of the BMBF/DFG Project CHAMP/GRACE 27
References 32
The CHAMP/GRACE User Portal ISDC 34
1 Introduction 34
2 Data Lifecycle Management 36
3 Metadata Model 38
4 Portal Architecture 41
4.1 Application Framework 42
4.2 Data Flow 42
4.3 Interfaces 43
5 Backend for Operational Services 45
5.1 Component Deployment 45
6 Outlook 46
References 47
Improvements for the CHAMP and GRACE Observation Model 48
1 Introduction 48
2 GPS Carrier Phase Wind-Up 48
2.1 General 48
2.2 Carrier Phase Wind-Up Validation 50
3 GPS Attitude Model 52
3.1 Nominal Yaw Regime 53
3.2 Noon/Midnight Turn Regime 54
3.3 Shadow Crossing Regime 55
3.4 Post-shadow Regime 56
4 Summary 57
References 58
The Release 04 CHAMP and GRACE EIGEN Gravity Field Models 60
1 Introduction 60
2 Monthly EIGEN-GRACE05S Time Series 61
3 Weekly EIGEN-GRACE05S Time Series 66
4 Monthly EIGEN-CHAMP05S Time Series 67
5 Satellite-Only and Combined EIGEN-5S and EIGEN-5C Solutions 68
6 A New Mean, Static EIGEN-CHAMP05S Gravity Field Model and Its Evaluation 70
7 Summary and Conclusions 74
References 75
Orbit Predictions for CHAMP and GRACE 78
1 Introduction 78
2 Orbit Prediction System 79
2.1 Preprocessing 79
2.2 Orbit Determination 80
2.3 Products 81
3 Accuracy of Predicted Orbits 82
4 Conclusions 84
References 84
Rapid Science Orbits for CHAMP and GRACE Radio Occultation Data Analysis 86
1 Introduction 86
2 GPS Rapid Science Orbits 87
3 Low Earth Orbiters Rapid Science Orbits 90
4 Summary 94
References 95
Parallelization and High Performance Computationfor Accelerated CHAMP and GRACE Data Analysis 97
1 Introduction 97
2 Removal of GPS Clock Parameters from the Observation Equations Using Dedicated Projections 99
3 Accelerated Computation of Normal Equations from Observation Equations via Additional Row-Block Parallelization 104
4 Adjustment of Satellite Arcs of Arbitrary Length 108
5 Conclusion 109
References 110
Part II GRACE 111
Improved GRACE Level-1 and Level-2 Productsand Their Validation by Ocean Bottom Pressure 112
1 Introduction 112
2 The GRACE Mission Configuration and Key Instrumentation 113
3 The GRACE Level-1 and Level-2 Products 114
4 Main Results of the BMBF/DFG Project GRACE 117
References 120
The GRACE Gravity Sensor System 122
1 GRACE Sensor System 122
1.1 The Accelerometer 123
1.1.1 Logical Model 123
1.1.2 Accelerometer Noise Model 125
1.2 The Star Sensor 125
1.2.1 Star Sensor Noise Model 126
1.3 The GPS Receiver 127
1.3.1 Error Model 128
1.4 The K-Band Ranging System 128
1.4.1 Error Model 129
2 Sensor System Interaction 130
3 Force Models 131
3.1 Gravitational Forces 131
3.2 Non-gravitational Forces 131
4 Real Data Analysis 132
5 Data Processing 134
6 Conclusions and Outlook 134
References 135
Numerical Simulations of Short-Term Non-tidal Ocean Mass Anomalies 136
1 Introduction 136
2 Ocean Model for Circulation and Tides (OMCT) 137
3 ECMWF Analyses and Forecasts 138
4 Continental and Atmospheric Freshwater Fluxes 139
5 Variations in Total Ocean Mass 141
6 Conclusions 144
References 145
Improved Non-tidal Atmospheric and Oceanic De-aliasing for GRACE and SLR Satellites 147
1 Introduction 147
2 OMCT Configuration for AOD1B RL04 149
3 Increase of the Temporal Resolution of AOD1B 151
4 AOD1B RL04 Time Series for Consistent SLR Data Processing 153
5 Conclusions 156
6 Notes 156
References 157
Global Gravity Fields from Simulated Level-1 GRACE Data 159
1 Introduction 159
2 Simulation of Observations 160
3 Estimation of Arc Specific Parameters and Gravity Field Coefficients 161
4 Estimation of Instrument Parameters 163
5 Orbit Geometry and Omission Error 165
6 Effect of Errors in the Background Models 165
7 Colored Observation Noise 167
8 Variation of the Arc Length and the Number of Instrument Parameters 169
9 Special Experiments Concerning the C20 Coefficient 171
10 Summary and Conclusions 172
References 173
ITG-GRACE: Global Static and Temporal Gravity Field Models from GRACE Data 175
1 Introduction 175
2 Physical Model 176
2.1 Model Setup 176
2.2 Stochastic Model 177
2.3 Representation of the Gravity Field 178
2.3.1 Static Gravity Field Representation 178
2.3.2 Representation of the Time Variable Gravity Field 178
3 Gravity Field Solution ITG-Grace03s 180
3.1 Data Set and Estimated Parameters 180
3.2 Temporal Variations 180
3.3 Static Solution 181
3.4 Covariance-Matrix 181
4 Conclusions 183
References 184
Validation of GRACE Gravity Fields by In-Situ Data of Ocean Bottom Pressure 185
1 Introduction 185
2 Data 187
2.1 In-Situ Ocean Bottom Pressure 187
2.2 GRACE 190
3 Methods 192
4 Results 192
5 Summary and Conclusions 198
References 200
Antarctic Circumpolar Current Transport Variability in GRACE Gravity Solutions and Numerical Ocean Model Simulations 202
1 Introduction 202
2 Data 204
3 Transport Variability and Ocean Bottom Pressure 205
4 SAM in GRACE Ocean Bottom Pressure 208
5 Discussion 212
References 214
Part III GOCE 215
Gravity and Steady-State Ocean Circulation Explorer GOCE 216
1 Introduction 216
2 The GOCE Mission 218
3 GOCE in the Context of the Geotechnology-Programme 221
4 Conclusions 225
References 225
GOCE Data Analysis: From Calibrated Measurementsto the Global Earth Gravity Field 226
1 Introduction 226
2 Processing Strategy for the Different Data Types 227
2.1 Processing of the SST Data 227
2.1.1 Kinematic Orbit and Velocity Determination 228
2.1.2 Energy Integral 229
2.2 Processing of the SGG Data 231
2.2.1 Functional Model for In-Situ SGG Data Processing 232
2.2.2 Stochastic Model of SGG Data 233
2.3 Introduction of Regularizing Prior Information 234
2.4 Combination of All Observation Groups 235
3 Solving the Combined Normal Equation System 236
3.1 Preconditioned Conjugate Gradients Multiple Adjustment 237
3.2 Integration of VCE into PCGMA 239
3.3 Integration of the Decorrelation Filters into PCGMA 239
4 Conclusion and Outlook 241
References 241
GOCE and Its Use for a High-Resolution Global Gravity Combination Model 243
1 Pre-GOCE Satellite-only Models 243
2 GOCE and Satellite-only Models 244
3 GOCE and Global Gravity Field Combination Models 247
3.1 Surface Data 247
3.2 Combination Models Derived from Full and Block-Diagonal Normal Equations 248
3.3 The GOCE-Model: Combination with Full Normal Equations Only 250
4 Conclusions 252
References 253
Spectral Approaches to Solving the Polar Gap Problem 255
1 Introduction 255
2 Selected Strategies A Review 256
2.1 Stabilization with External Data 256
2.2 Stabilization without External Data 258
3 Regularization and Combination 259
4 Slepian Parameterization 261
4.1 Solving the Eigenvalue Problem 262
5 Conclusions 264
References 264
Regionally Refined Gravity Field Models from In-Situ Satellite Data 266
1 Introduction 266
2 Mathematical Model 267
2.1 Basis Functions 268
2.2 Regionally Adapted Regularization 269
3 Simulation Scenario 271
4 Conclusions 274
References 274
Quality Evaluation of GOCE Gradients 276
1 Cross-Over Analysis 276
1.1 Short Term Biases 277
1.2 Trend 278
1.3 Fourier Coefficients 280
2 Accuracy Analysis of External Reference Gradients in the Frequency Domain 281
2.1 Spectral Combination Method 281
2.2 Synthetic Data 282
2.3 Closed-Loop Differences in the Frequency Domain 283
3 Generation of Quality Reports 284
4 Conclusions 286
References 286
Validation of Satellite Gravity Field Models by Regional Terrestrial Data Sets 288
1 Introduction 288
2 Gravity Data 290
3 GPS and Levelling Data 293
4 Gravimetric Quasigeoid Models 294
5 Astrogeodetic Vertical Deflections 296
5.1 Astrogeodetic Validation of GPS/Levelling Data and Gravimetric Quasigeoid Models 297
5.2 Astrogeodetic Validation of Global Geopotential Models 298
6 Global Model Validation by Wavelet Techniques 299
6.1 Filtering Terrestrial Data by Second Generation Wavelets 300
6.2 First Results with Second Generation Wavelets 303
7 Conclusions 304
References 305
Comparison of GRACE and Model-Based Estimates of Bottom Pressure Variations Against In Situ Bottom Pressure Measurements 308
1 Introduction 308
2 Methodology 310
3 Comparison of Results with Bottom Pressure Sensors 312
4 Comparison of GRACE Results with Model Simulations and Bottom Pressure Sensors 313
5 Global EOF Fields of GRACE and Model pb Variations 317
6 Concluding Remarks 318
References 319
Part IV SEAVAR 321
Sea Level Variations -- Prospects from the Past to the Present(SEAVAR) 322
Radar Altimetry Derived Sea Level Anomalies -- The Benefit of New Orbits and Harmonization 326
1 Introduction 326
2 The Altimeter Database and Processing System (ADS) 326
3 Harmonization of Different Altimetric Missions 327
4 The Effects of New Orbits 328
5 Summary and Outlook 331
References 332
Combining GEOSAT and TOPEX/Poseidon Data by Means of Data Assimilation 334
1 Introduction 334
2 Model and Data 334
3 Results 336
4 Summary and Conclusions 340
References 341
Reanalysis of GPS Data at Tide Gauges and the Combination for the IGS TIGA Pilot Project 343
1 Introduction 343
2 Reprocessing of GPS Data at Tide Gauge Benchmarks at GFT 343
3 Combination of Weekly TIGA Solutions 346
4 Summary and Conclusions 347
References 347
Sea Level Rise in North Atlantic Derived from Gap Filled Tide Gauge Stations of the PSMSL Data Set 349
1 Introduction 349
2 The PSMSL Gauge Data Set 350
3 Theoretical Background and Used Method 351
4 Reduced Number of Gauges and Calibration of IFEOM 354
5 Conclusions 357
References 357
Using ARGO, GRACE and Altimetry Data to Assess the Quasi Stationary North Atlantic Circulation 358
1 Introduction 358
2 Model Setup and Data 359
3 Results 359
4 Summary and Conclusions 363
References 364
A 15-Year Reconstruction of Sea Level Anomalies Using Radar Altimetry and GPS-Corrected Tide Gauge Data 366
1 Introduction 366
2 Methodology 366
3 Comparison of GIA vs. GPS Corrections 369
4 Conclusion 370
References 371
Part V TIVAGAM 373
Continental Water Storage Variations from GRACE Time-Variable Gravity Data 374
1 Surface Mass Variations from GRACE 374
2 Surface Mass Processes: Continental Hydrology 376
3 The TIVAGAM Project 378
References 379
Surface Mass Variability from GRACE and Hydrological Models: Characteristic Periods and the Reconstruction of Significant Signals 381
1 Introduction 381
2 Input Data and Preprocessing 382
3 Methodology 383
4 Application to Continental Grids and River Basins 384
5 Reconstruction of Filtered GRACE Time Series of Surface Mass Anomalies 387
6 Conclusions 389
References 389
Time-Space Multiscale Analysis and Its Application to GRACE and Hydrology Data 391
1 Introduction 391
2 Multiscale Analysis 392
2.1 Separated Wavelet Analysis with Spherical Wavelets in Space and Euclidean Wavelets in Time Domain 392
2.2 Tensor Product Wavelets 395
3 Comparison of the Wavelet Methods Involving Correlation coefficients 396
4 Adapted Filter for the Extraction of a Hydrology Model from GRACE Data 397
5 Conclusions 400
References 400
Mass Variation Signals in GRACE Products and in Crustal Deformations from GPS: A Comparison 402
1 Introduction 402
2 Crustal Deformation Time Series from GPS in a Consistent Reference Frame 402
3 Comparison of Low-Degree Deformations from GPS and GRACE 403
4 Comparison of Point-Wise Deformation Time Series 403
4.1 Daily GPS Versus Geophysical Models 403
4.2 Monthly GPS Versus Grace 405
5 Systematics in GPS-GRACE Discrepancies 405
6 Regionalized Comparison Studies 407
7 Conclusions 409
References 409
Monthly and Daily Variations of Continental Water Storageand Flows 410
1 Introduction 410
2 Modelling of Global Continental Water Storage and Flows with WGHM 411
2.1 Model Overview 411
2.2 Improved Representation of Lateral Flows 411
2.2.1 Variable Flow Velocity 411
2.2.2 Reservoir Algorithm 412
2.3 Climate Input Data 412
3 Results 413
3.1 Impact of Dynamic Flow Velocity Algorithm on River Discharge and Storage 413
3.2 Impact of Reservoir Algorithm on River Discharge and Storage 414
3.3 Daily Variations of Water Storage 415
4 Best Estimate of Continental Water Storage and Flows 416
5 Conclusions 416
References 417
Calibration of a Global Hydrological Model with GRACE Data 419
1 Introduction 419
2 Methods 420
2.1 Hydrological Model 420
2.2 Parameter Sensitivity Analysis 420
2.3 GRACE Data and Filter 421
2.4 Calibration Approach 423
3 Results 424
4 Conclusions 426
References 427
Part VI NRT-RO 429
Near-Real-Time Provision and Usage of Global Atmospheric Data from CHAMP and GRACE (NRT-RO):Motivation and Introduction 430
References 433
Global Atmospheric Data from CHAMP and GRACE-A: Overview and Results 434
1 Introduction 434
2 Status of CHAMP and GRACE Radio Occultations 435
3 Near-Real Time Occultation Infrastructure and Data Analysis at GFZ 436
4 Monitoring and Assimilation of CHAMP and GRACE Data to Global Weather Models 437
5 GPS Radio Occultation with TerraSAR-X 439
6 Summary 440
References 440
Near-Real Time Satellite Orbit Determination for GPS Radio Occultation with CHAMP and GRACE 443
1 Introduction 443
2 NRT Orbit Processing System 444
2.1 CHAIN 1: GPS-Based Processing 444
2.2 CHAIN 2: IGU-Based Processing 446
2.3 CHAIN 3: IGU-Fixed-30s Processing 446
3 Summary 453
References 453
The Operational Processing System for GPS Radio Occultation Data from CHAMP and GRACE 455
1 Introduction 455
2 Infrastructure and Input Data 456
3 The CHAMP/GRACE Atmospheric Processor 456
4 Standard and NRT Processing 457
5 Summary 459
References 459
Assimilation of CHAMP and GRACE-A Radio Occultation Data in the GME Global Meteorological Model of the GermanWeather Service 461
1 Introduction: Data Assimilation 461
2 Activities of the DWD in the NRT-RO Project 463
3 Evaluation of Bending Angle Forward Operators 463
4 Monitoring 467
5 Assimilation Experiments 469
6 Summary and Outlook 470
References 470
Part VII MAGFIELD 472
The Earths Magnetic Field at the CHAMP Satellite Epoch 473
1 Introduction 473
2 Ground and Space Measurements 475
2.1 Ground Measurements 476
2.1.1 Magnetic Observatories 476
2.1.2 More Ground or Near-Earth Measurements 478
2.2 Satellite Measurements 479
2.3 CHAMP Data Processing 480
2.3.1 Overhauser Magnetometer Data Processing 480
2.3.2 Fluxgate Magnetometer Data Processing 483
2.3.3 In-Flight Scalar Calibration 486
2.4 Advanced Stellar Compass Data Processing 488
2.5 Magnetic Field Data in NEC Frame 491
2.6 Complementarity of the Ground and Satellite Data 493
3 Data and Field Modeling 495
3.1 Data Selection 496
3.1.1 Data Selection -- General Needs 496
3.1.2 Data Selection -- New Approach 497
3.2 Global Modeling 500
3.3 Regional Modeling 503
3.3.1 Wavelet Frames 507
3.3.2 Inverse Problem 508
3.3.3 Local Multipole Approximations 509
4 Lithospheric Field: More Details at All Scales 510
4.1 Lithospheric Field and Its Large Scale 510
4.2 Lithospheric Field and Its Small Scale 512
4.2.1 World Digital Magnetic Anomaly Map 512
4.2.2 Some Qualitative Geology 518
5 Conclusions and Outlook 521
References 522
Part VIII GGOS-D 525
Integration of Space Geodetic Techniques as the Basis for a Global Geodetic-Geophysical Observing System (GGOS-D):An Overview 526
1 Motivation 526
2 Goals of GGOS-D 527
3 Structure of GGOS-D 528
4 Data Management and Information System 529
5 Common Modeling Standards and Parameterization 529
6 Consistent Long-Term Time Series of the Space Geodetic Techniques 530
7 The GGOS-D Terrestrial Reference Frame 532
8 Comparisons and Validation of Long-Term Series of Geodetic and Geophysical Parameters 532
9 Conclusions and Outlook 533
References 534
GGOS-D Data Management From Data to Knowledge 535
1 Contributions for a Data and Information System for GGOS-D 535
2 Data Management for a Global Geodetic-Geophysical Observing System 536
3 Integration of External Geodetic-Geophysical Series 538
4 Design of a Geodetic Metadata Catalogue Based on ISO Standards 538
5 Summary 539
References 540
GGOS-D Consistent, High-Accuracy Technique-Specific Solutions 541
1 Introduction 541
2 Standards, Conventions, Parameterization, Models 542
3 Global Positioning System 544
4 Very Long Baseline Interferometry 545
5 Satellite Laser Ranging 546
6 Summary and Conclusions 548
References 549
GGOS-D Global Terrestrial Reference Frame 551
1 Introduction 551
2 Input Data for TRF Computation 552
3 Combination Methodology for TRF Computation 553
4 Accumulation of Time Series per Space-Technique 554
5 Computation of the TRF Solution 557
6 Conclusions 559
References 559
GGOS-D Consistent and Combined Time Series of Geodetic/Geophyical Parameters 561
1 Introduction 561
2 Time Series of Site Coordinates 562
2.1 Seasonal Effects in Site Positions 562
2.2 Thermal Expansion Effects in VLBI 564
3 Time Series of Earth Orientation Parameters 565
3.1 EOP Time Series Resulting from a Consistent Combination of TRF and EOP 565
3.2 Analysis of Nutation Time Series 567
4 Time Series of Atmosphere Parameters 568
5 Conclusions 570
References 571
GGOS-D Integration with Low Earth Orbiters 572
1 Introduction 572
2 Characterization of the Integrated Processings 573
3 Comparison with a Two-Step Processing 574
4 Time Series of the Dynamic Origin 575
5 Conclusions and Outlook 576
References 577
Index 578

Erscheint lt. Verlag 10.7.2010
Reihe/Serie Advanced Technologies in Earth Sciences
Advanced Technologies in Earth Sciences
Zusatzinfo XX, 596 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Earth system science • Geodesy • GGOS • Orbit • Remote Sensing • Remote Sensing/Photogrammetry • Satellite • satellite gravimetry
ISBN-10 3-642-10228-X / 364210228X
ISBN-13 978-3-642-10228-8 / 9783642102288
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 24,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Olaf Kühne; Florian Weber; Karsten Berr; Corinna Jenal

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
109,99
Inwertsetzung und Schutz unseres Geo-Erbes

von Heidi Elisabeth Megerle

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
59,99