Molecular Mechanisms of Neurotransmitter Release (eBook)

Zhao-Wen Wang (Herausgeber)

eBook Download: PDF
2010 | 1. Auflage
XIII, 347 Seiten
Humana Press (Verlag)
978-1-59745-481-0 (ISBN)

Lese- und Medienproben

Molecular Mechanisms of Neurotransmitter Release -
Systemvoraussetzungen
212,93 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Neurons in the nervous system organize into complex networks and their functions are precisely controlled. The most important means for neurons to communicate with each other is transmission through chemical synapses, where the release of neurotransmitters by the presynaptic nerve terminal of one neuron influences the function of a second neuron. Since the discovery of chemical neurotransmission by Otto Loewi in the 1920s, great progress has been made in our understanding of mol- ular mechanisms of neurotransmitter release. The last decade has seen an explosion of knowledge in this field. The aim of Molecular Mechanisms of Neurotransmitter Release is to provide up-to-date, in-depth coverage of essentially all major mole- lar mechanisms of neurotransmitter release. The contributors have made great efforts to write concisely but with sufficient background information, and to use figures/diagrams to present clearly key concepts or experiments. It is hoped that this book may serve as a learning tool for neuroscience students, a solid reference for neuroscientists, and a source of knowledge for people who have a general interest in neuroscience. I was fortunate to be able to gather contributions from a group of outstanding scientists. I thank them for their efforts. In particular, I want to thank Dr. Erik Jorgensen who offered valuable suggestions about the book in addition to contrib- ing an excellent chapter. I thank US National Science Foundation and National Institute of Health for their supports.
Neurons in the nervous system organize into complex networks and their functions are precisely controlled. The most important means for neurons to communicate with each other is transmission through chemical synapses, where the release of neurotransmitters by the presynaptic nerve terminal of one neuron influences the function of a second neuron. Since the discovery of chemical neurotransmission by Otto Loewi in the 1920s, great progress has been made in our understanding of mol- ular mechanisms of neurotransmitter release. The last decade has seen an explosion of knowledge in this field. The aim of Molecular Mechanisms of Neurotransmitter Release is to provide up-to-date, in-depth coverage of essentially all major mole- lar mechanisms of neurotransmitter release. The contributors have made great efforts to write concisely but with sufficient background information, and to use figures/diagrams to present clearly key concepts or experiments. It is hoped that this book may serve as a learning tool for neuroscience students, a solid reference for neuroscientists, and a source of knowledge for people who have a general interest in neuroscience. I was fortunate to be able to gather contributions from a group of outstanding scientists. I thank them for their efforts. In particular, I want to thank Dr. Erik Jorgensen who offered valuable suggestions about the book in addition to contrib- ing an excellent chapter. I thank US National Science Foundation and National Institute of Health for their supports.

Preface 7
Contents 10
Contributors 19
Chapter 1 20
Transport and Pumping of Sewage Sludge and Biosolids 20
1. Introduction 20
1.1. Sewage Sludge and Biosolids 20
1.2. Biosolids Applications 21
1.3. Transport and Pumping of Sewage Sludge and Biosolids 21
2. Pumping 21
2.1. Types of Sludge and Biosolids Pumps 22
2.1.1. Centrifugal Pumps 22
2.1.2. Torque Flow Pumps 23
2.1.3. Plunger Pumps 24
2.1.4. Piston Pumps 25
2.1.5. Progressive Cavity Pumps 26
2.1.6. Diaphragm Pumps 27
2.1.7. Rotary Pumps 29
2.1.8. Ejector Pumps 30
2.1.9. Gas Lift Pumps 31
2.1.10. Water Eductors 31
2.2. Application and Performance Evaluation of Sludge and Sludge/Biosolids Pumps 31
2.3. Control Considerations 33
3. Pipelines 37
3.1. Pipe, Fittings, and Valves 37
3.2. Long-Distance Transport 37
3.3. Headloss Calculations 40
3.4. Design Guidance 41
3.5. In-Line Grinding 45
3.6. Cost 45
4. Dewatered Wastewater Solids Conveyance 47
4.1. Manual Transport of Screenings and Grit 48
4.2. Belt Conveyors 48
4.3. Screw Conveyors 51
4.4. Positive-Displacement–Type Conveyors 52
4.5. Pneumatic Conveyors 52
4.7. Odors 55
5. Long-Distance Wastewater Solids Hauling 55
5.1. Truck Transportation 56
5.1.1. Types of Trucks 56
5.1.2. Owned Equipment vs. Contract Hauling 57
5.1.3. Haul Scheduling 58
5.1.4. Design Criteria 58
5.1.5. Costs of Sludge/biosolids Trucking 58
5.1.6. Training of Workers 59
5.2. Rail Transportation 61
5.2.1. Advantages and Disadvantages 61
5.2.2. Routes 61
5.2.3. Haul Contracts 62
5.2.4. Railcar Supply 62
5.2.5. Ancillary Facilities 63
5.2.6. Design Criteria 63
5.2.7. Manpower, Energy Requirements, and Costs 65
5.3. Barge Transportation 66
5.3.1. Routes and Transit Times 66
5.3.2. Haul or System Contracting 67
5.3.3. Barge Selection and Acquisition 68
5.3.4. Ancillary Facilities 69
5.3.5. Spill Prevention and Cleanup 70
5.4. Design of Sludge/Biosolids Hauling 70
5.4.1. Background 70
5.4.2. Input Data 71
5.4.3. Design Parameters 72
5.4.4. Design Procedure 72
5.4.5. Output Data 73
5.5. Example 73
Given: 73
Compute: 73
6. Potential Risk to Biosolids Exposure 74
6.1. Biosolids Constituents that Require Control ofWorker Exposure 75
6.2. Steps to Be Taken for Protection of Workers 76
6.2.1. Provision of Basic Hygiene Recommendations for Workers 76
6.2.2. Provision of Appropriate Protective Equipment, Hygiene Stations, and Training 77
6.2.2.1. Personal Protective Equipment 77
6.2.2.2. Hygiene and Sanitation 77
6.2.2.3. Training 77
6.2.2.4. Reporting 77
6.2.2.5. Immunizations 78
6.2.3. Good Environmental Practices to Prevent and Minimize Occupational Exposures 78
Nomenclature 78
References 79
Appendix 83
Chapter 2 84
Conversion of Sewage Sludge to Biosolids 84
1. Introduction 84
1.1. Sewage and Sewage Sludge Generation 84
1.2. Composition and Characteristics of Sewage 85
1.3. Sewage and Sewage Sludge Treatment 87
1.3.1. Objectives of Sewage Treatment 87
1.3.2. Sewage Treatment Processes 87
1.3.2.1. Screening (or Preliminary) Treatment 87
1.3.2.2. Primary Treatment 87
1.3.3. Biosolids Treatment 88
1.3.4. Biosolids Applications 88
1.4. Biosolids Regulations 89
2. Sewage Clarification 91
2.1. Sedimentation Clarification 91
2.2. Flotation Clarification 91
2.3. Membrane Clarification 92
3. Sewage Sludge Stabilization 92
3.1. Aerobic Stabilization 93
3.1.1. Autothermal Thermophilic Aerobic Digestion (ATAD) 94
3.1.2. Anoxic Aerobic Digestion 94
3.2. Alkaline Stabilization 94
3.2.1. Alkaline Pretreatment 95
3.2.2. Lime Stabilization 95
3.3. Advanced Alkaline Stabilization 96
3.4. Anaerobic Digestion 96
3.4.1. Two-Stage Digesters 99
3.4.2. Anaerobic-Baffled Reactor (ABR) 99
3.4.3. Columbus Biosolids Flow-Through Thermophilic Treatment (CBFT3) 100
3.4.4. High Rate Plug Flow 100
3.4.5. Temperature-Phased Anaerobic Digestion 100
3.4.6. Thermal Hydrolysis 100
3.4.7. Thermophilic Anaerobic Digestion Fermentation 101
3.4.8. Three-Phase Anaerobic Digestion 101
3.4.9. Two-Phase Anaerobic Digestion 101
3.4.10. Anaerobic Digestion with Ozone Treatment 102
3.4.11. Ferrate Addition 102
3.4.12. Irradiation 102
3.4.13. Acidification 102
3.5. Composting 103
3.5.1. Aerated Static Pile 104
3.5.2. Windrow 104
3.5.3. In-Vessel 105
3.5.4. Vermicomposting 105
3.6. Pasteurization 105
3.7. Deep-Shaft Digestion 106
4. Conditioning 106
4.1. Chemical Conditioning 106
4.2. Heat Conditioning 107
4.3. Cell Destruction 108
4.3.1. Chemical Cell Destruction 108
4.3.2. Ultrasonic Cell Destruction 109
4.3.3. Biological Cell Destruction 109
4.4. Odor Conditioning 109
4.5. Electrocoagulation 110
4.6. Enzyme Conditioning 111
4.7. Freezing 111
5. Thickening 112
5.1. Gravity Thickening 112
5.2. Centrifugation Thickening 114
5.3. Gravity Belt Thickening 116
5.4. Flotation Thickening 116
5.5. Rotary Drum Thickening 116
5.6. Anoxic Gas Flotation Thickening 116
5.7. Membrane Thickening 118
5.8. Recuperative Thickening 119
5.9. Metal Screen Thickening 119
6. Dewatering and Drying 119
6.1. Belt Filter Press 119
6.2. Recessed-Plate Filter Press 120
6.3. Centrifuges 122
6.3.1. Solid-Bowl Centrifuge 122
6.3.2. Imperforate Basket Centrifuge 122
6.4. Drying Beds 123
6.4.1. Conventional Drying Beds 123
6.4.2. Paved Drying Beds 123
6.4.3. Vacuum-Assisted Drying Beds 124
6.4.4. Artificial Media Drying Beds 124
6.4.5. Quick Drying Beds 124
6.5. Vacuum Filtration 125
6.6. Electro-Dewatering 126
6.6.1. Electroacoustic Dewatering 126
6.6.2. Electro-Osmotic Dewatering 126
6.7. Metal Screen Filtration 126
6.8. Textile Media Filtration 127
6.8.1. Bucher Hydraulic Press 127
6.8.2. Drainer System 127
6.8.3. Geotextile Tube Container 127
6.8.4. Simon Moos 127
6.8.5. Tubular Filter Press 128
6.9. Membrane Filter Press 128
6.10. Thermal Conditioning and Dewatering 128
6.11. Drying 128
6.11.1. Direct Drying 129
6.11.2. Flash Drying 129
6.11.3. Indirect Drying 130
6.11.4. Belt Drying 131
6.11.5. Direct Microwave Drying 131
6.11.6. Fluidized Bed Drying 131
6.11.7. Chemical Drying 131
7. Other Processes 132
7.1. Focused Electrode Leak Locator (FELL) Electroscanning 132
7.2. Lystek Thermal/Chemical Process 132
7.3. Kiln Injection 132
8. Case Study 133
9. Summary 133
Acronyms 133
References 134
Chapter 3 139
Biosolids Thickening-Dewatering and Septage Treatment 139
1. Introduction 140
2. Expressor Press 141
3. Som-A-System 143
4. Centripress 145
5. Hollin Iron Works Screw Press 146
6. Sun Sludge System 150
7. Wedgewater Bed 152
8. Vacuum-Assisted Bed 154
9. Reed Bed 155
10. Sludge-Freezing Bed 157
11. Biological Flotation 158
12. Septage Treatment 158
12.1. Receiving Station (Dumping Station/Storage Facilities) 158
12.2. Receiving Station (Dumping Station, Pretreatment, Equalization) 159
12.3. Land Application of Septage 160
12.4. Lagoon Disposal 162
12.5. Composting 163
12.6. Odor Control 164
References 165
Chapter 4 169
Waste Chlorination and Stabilization 169
1. Introduction 169
1.1. Process Introduction 169
1.2. Glossary 170
2. Wastewater Chlorination 171
2.1. Process Description 171
2.2. Design and Operation Considerations 172
2.2.1. General Considerations 172
2.2.2. Specific Design Procedures 174
2.3. Process Equipment and Control 175
2.4. Design Example—Design of aWastewater Chlorine Contact Chamber 176
2.5. Application Example—Coxsackie Sewage Treatment Plant, Coxsackie, NY, USA 183
3. Sludge Chlorination and Stabilization 185
3.1. Process Description 185
3.2. Design and Operation Considerations 187
3.3. Process Equipment and Control 189
3.3.1. Process Equipment 189
3.3.2. Staffing Requirements 189
3.3.3. Monitoring 189
3.3.4. Normal Operating Procedures 190
3.3.4.1. Pre-Startup and Startup 190
3.3.4.2. Routine and Shutdown Operations 191
3.3.5. Process Control Considerations 191
3.3.6. Emergency Operating Procedures 191
3.3.7. Common Process Shortcomings and Solutions 192
3.3.8. Maintenance Considerations 192
3.4. Application Example—Coxsackie Sewage Treatment Plant, Coxsackie, NY, USA 196
4. Septage Chlorination and Stabilization 201
4.1. Process Description 201
4.2. Design and Operation Considerations 202
4.3. Process Equipment and Control 204
4.4. Design Criteria 204
5. Safety Considerations of Chlorination Processes 205
6. Recent Advances Inwaste Disinfection 206
Nomenclature 207
Acknowledgments 207
References 208
Chapter 5 211
Storage of Sewage Sludge and Biosolids 211
1. Introduction 211
1.1. Need for Storage 212
1.2. Risks and Benefits of Solids Storage Within Wastewater Treatment Systems 212
1.3. Storage Within Wastewater Sludge Treatment Processes 212
1.4. Field Storage of Biosolids 213
1.5. Effects of Storage on Wastewater Solids 213
1.6. Types of Storage 214
2. Wastewater Treatment Storage 215
2.1. StorageWithin Wastewater Treatment Processes 215
2.1.1. Grit Removal 215
2.1.2. Primary Sedimentation 220
2.1.3. Aeration Reactors and Secondary Sedimentation 220
2.1.4. Imhoff and Community Septic Tanks 221
2.1.5. Wastewater Stabilization Ponds 221
2.1.6. Evaporation Lagoons 222
2.1.6.1. Performance 223
2.1.6.2. Design Criteria 223
2.1.6.3. Energy and Cost 223
2.2. Storage Within Wastewater Sludge Treatment Processes 224
2.2.1. Gravity Thickeners 224
2.2.2. Anaerobic Digesters 224
2.2.3. Aerobic Digesters 225
2.2.4. Composting 225
2.2.5. Drying Beds 225
3. Facilities Dedicated to Storage of Liquid Sludge 226
3.1. Holding Tanks 226
3.1.1. Design Criteria 227
3.1.2. Costs of Holding Tanks 228
3.2. Facultative Sludge Lagoons 231
3.2.1. Theory 232
3.2.2. Usage Status 233
3.2.3. Design Criteria 234
3.2.3.1. Area Loading Rate 235
3.2.3.2. Surface Agitation Requirements 235
3.2.3.3. Dimensional and Layout Limitations 235
3.2.3.4. Physical Considerations 237
3.2.4. Operational Considerations 238
3.2.4.1. Startup and Loading 238
3.2.4.2. Daily Routine 239
3.2.4.3. Sludge Removal 239
3.2.5. Energy Impacts 239
3.2.6. Actual Performance Data 239
3.2.7. Public Health and Environmental Impact 241
3.2.7.1. Vector Impacts 242
3.2.7.2. Groundwater Impacts 242
3.2.7.3. Pathogen Impacts 242
3.2.7.4. Odor Impacts 245
3.3. Anaerobic Liquid Sludge Lagoons 247
3.4. Aerated Storage Basins 250
3.4.1. Mixing Requirements 250
3.4.2. Oxygen Requirements 251
3.4.3. Level Variability 251
4. Facilities Dedicated to Storage of Dewatered Sludge 251
4.1. Drying Sludge Lagoons 252
4.1.1. Performance Data 252
4.1.1.1. San Jose, California 252
4.1.1.2. Chicago 253
4.2. Confined Hoppers or Bins 255
4.2.1. Continuing Decomposition 255
4.2.2. Liquefaction 256
4.2.3. Concentration and Consolidation 256
4.2.4. Performance Data 257
4.3. Unconfined Stockpiles 259
5. Field Storage of Biosolids 260
5.1. Management of Storage 261
5.1.1. Critical Control Points (Key Management Areas) 261
5.1.2. Variables Related to Intensity of Management 261
5.1.3. Need for Partnerships 263
5.2. Odors 263
5.2.1. Primary Biosolids Odorants 264
5.2.2. Odor Management: A Partnership Effort 264
5.2.3. Factors Affecting Ultimate Odor Potential at Critical Control Point 1: The Wastewater Treatment Plant 265
5.2.3.1. Stability 265
5.2.3.2. Vector Attraction Reduction 267
5.2.4. Factors Affecting Ultimate Odor Potential at Critical Control Point 2: The Transportation Process 267
5.2.5. Factors Affecting Ultimate Odor Potential at Critical Control Point 3: The Field Storage Site 267
5.3. Water Quality 268
5.3.1. Nutrients, Organic Matter, and Impacts on Surface Water 269
5.3.2. Nutrients and Groundwater 270
5.3.3. Pathogenic Organisms 270
5.3.4. Metals and Synthetic Organic Chemicals 271
5.3.5. Management Approaches 271
5.4. Pathogens 273
5.4.1. Biosolids Products Characteristics 274
5.4.2. Biosolids Storage Considerations 275
5.4.2.1. Pathogens in Stored Class A Biosolids 275
5.4.2.2. Pathogens in Stored Class B Biosolids 275
5.4.2.3. Accumulated Water 276
5.4.2.4. Required Retesting 276
5.4.3. Storage Site Management 276
5.4.4. Worker Safety 278
6. Design Examples 279
Example 1 279
Example 2 280
Example 3 284
Nomenclature 285
References 285
Appendix 290
Chapter 6 291
Regulations and Costs of Biosolids Disposal and Reuse 291
1. Introduction 292
1.1. Historical Background 292
1.2. Background of the Part 503 Rule 293
1.3. Risk Assessment Basis of the Part 503 Rule 294
1.4. Overview of the Rule 294
2. Land Application of Biosolids 295
2.1. Pollutant Limits, and Pathogen and Vector Attraction Reduction Requirements 298
2.2. Options for Meeting Land Application Requirements 298
2.2.1. Option 1: Exceptional Quality Biosolids 301
2.2.2. Option 2: Pollutant Concentration Biosolids 302
2.2.3. Option 3: Cumulative Pollutant Loading Rate Biosolids 304
2.2.4. Option 4: Annual Pollutant Loading Rate (APLR) Biosolids 307
Example 1 308
Solution 308
2.3. General Requirements and Management Practices 308
2.3.1. Endangered Species 308
2.3.2. Flooded, Frozen, or Snow-Covered Land 309
2.3.3. Distance to U.S. Waters 309
2.3.4. Agronomic Rate 309
Example 2 310
Solution 310
2.4. Frequency of Monitoring Requirements 310
2.5. Record-Keeping and Reporting Requirements 310
2.6. Domestic Septage 311
2.7. Liability Issues and Enforcement Oversight 311
3. Surface Disposal of Biosolids 312
3.1. General Requirements for Surface Disposal Sites 313
3.2. Pollutant Limits for Biosolids Placed on Surface Disposal Sites 314
3.3. Management Practices for Surface Disposal of Biosolids 315
3.3.1. Protection of Threatened or Endangered Species 315
3.3.2. Restriction of Base Flood Flow 316
3.3.3. Geological Stability 316
3.3.4. Protection of Wetlands 317
3.3.5. Collection of Runoff 317
3.3.6. Collection of Leachate 318
3.3.7. Limitations on Methane Gas Concentrations 318
3.3.8. Restrictions on Crop Production 319
3.3.9. Restrictions on Grazing 319
3.3.10. Restrictions on Public Access 320
3.3.11. Protection of Ground Water 320
3.4. Pathogen and Vector Attraction Reduction Requirements for Surface Disposal Sites 320
3.5. Frequency of Monitoring Requirements for Surface Disposal Sites 321
3.6. Record-Keeping and Reporting Requirements for Surface Disposal Sites 323
3.7. Regulatory Requirements for Surface Disposal of Domestic Septage 323
4. Incineration of Biosolids 323
4.1. Pollutant Limits for Biosolids Fired in a Biosolids Incinerator 324
4.1.1. Beryllium and Mercury Pollutant Limits 324
4.1.2. Control Efficiency, Dispersion Factor, Feed Rate, and Pollutant Limit Calculations for Lead 326
Example 3 326
Solution 326
Example 4 328
Example 5: Pollutant Limit for Arsenic 330
4.2. Total Hydrocarbons 332
4.2.1. Total Hydrocarbon and Carbon Monoxide Measurement 332
4.2.2. Correction for 0% Moisture 332
Example 6 332
Solution 333
4.2.3. Correction to 7% Oxygen 333
Example 7 333
Solution 334
4.3. Management Practices for Biosolids Incineration 334
4.3.1. Instruments Operation and Maintenance 334
4.3.2. Temperature Requirements 335
4.3.3. Air Pollution Control Devices 335
4.3.4. Protection of Threatened or Endangered Species 335
4.4. Frequency of Monitoring Requirements for Biosolids Incineration 335
4.4.1. Monitoring for Metals 335
4.4.2. Continuous Monitoring 336
4.4.3. Monitoring Conditions in Air Pollution Control Devices 336
4.5. Record-Keeping and Reporting Requirements for Biosolids Incineration 338
5. Pathogen and Vector Attraction Reduction Requirements 338
5.1. Pathogen Reduction Alternatives 338
5.1.1. Class A Pathogen Requirements 339
5.1.1.1. Alternative 1 for Meeting Class A: Thermally Treated Biosolids 340
Example 8 341
Solution 341
Example 9 341
Solution 342
5.1.1.2. Alternative 2 For Meeting Class A: Biosolids Treated in A High Ph-High Temperature Process 342
5.1.1.3. Alternative 3 for Meeting Class A: Biosolids Treated in Other Processes 342
5.1.1.4. Alternative 4 for Meeting Class A: Biosolids Treated in Unknown Processes 343
5.1.1.5. Alternative 5 for Meeting Class A: Biosolids Treated in A Process to Further Reduce Pathogens 343
5.1.1.6. Alternative 6 for Meeting Class A: Biosolids Treated in A Process Equivalent to A Process to Further Reduce Pathogens 344
5.1.2. Class B Pathogen Requirements 345
5.1.2.1. Alternative 1 for Meeting Class B: The Monitoring of Indicator Organisms 345
5.1.2.2. Alternative 2 for Meeting Class B: Biosolids Treated in Aprocess to Significantly Reduce Pathogens 345
5.1.2.3. Alternative 3 for Meeting Class B: Biosolids Treatedin A Process Equivalent to A Process to Significantly Reduce Pathogens 346
5.2. Requirements for Reducing Vector Attraction 346
5.2.1. Option 1: Reduction in Volatile Solids Content 347
5.2.2. Option 2: Additional Digestion of Anaerobically Digested Biosolids 347
5.2.3. Option 3: Additional Digestion of Aerobically Digested Biosolids 348
5.2.4. Option 4: Specific Oxygen Uptake Rate for Aerobically Digested Biosolids 348
5.2.5. Option 5: Aerobic Processes at Greater Than 40DegreeC 348
5.2.6. Option 6: Addition of Alkaline Material 348
5.2.7. Option 7: Moisture Reduction of Biosolids Containing No Unstabilized Solids 349
5.2.8. Option 8: Moisture Reduction of Biosolids Containing Unstabilized Solids 349
5.2.9. Option 9: Biosolids Injection 349
5.2.10. Option 10: Incorporation of Biosolids into the Soil 349
5.2.11. Option 11: Covering Biosolids 350
5.2.12. Option 12: Alkaline Treatment for Domestic Septage 350
6. Costs 350
6.1. Description of Alternatives 351
6.2. Cost Relationships 354
6.3. Sludge Disposal Cost Curves 354
6.4. Procedure for Using the Diagram 355
Acronyms 355
Nomenclature 356
References 356
Appendix 360
Chapter 7 361
Engineering and Management of Agricultural Land Application 361
1. Introduction 362
1.1. Biosolids 362
1.2. Biosolids Production and Pretreatment Before Land Application 362
1.3. Biosolids Characteristics 363
1.4. Agricultural Land Application for Beneficial Use 365
1.5. U.S. Federal and State Regulations 366
1.5.1. Heavy Metal Limits 367
1.5.2. Organic Chemicals 368
1.5.3. Pathogen Reduction 368
1.5.4. Vector Attraction Reduction 369
1.5.5. Categories of Biosolids Quality 369
1.5.6. Nutrients 371
1.5.7. Site Suitability and Location 371
2. Agricultural Land Application 371
2.1. Land Application Process 371
2.2. Agricultural Land Application Concepts and Terminologies 373
3. Planning and Management of Agricultural Land Application 379
3.1. Planning 379
3.1.1. Planning Before Land Application 379
3.1.2. Planning During Land Application 379
3.1.3. Planning After Land Application 379
3.2. Nutrient Management 379
3.2.1. Nutrient Management Goal 379
3.2.2. Farm Identification Elements for Nutrient Management 380
3.2.3. Nutrient Management Plan Summary Elements 381
3.2.4. Nutrient Allocation and Use Elements 381
3.2.5. Restrictions Elements 381
4. Design of Land Application Process 382
4.1. Biosolids Application Rate Scenario 382
4.2. Step-by-Step Procedures for Biosolids Application Rate Determination 384
4.2.1. Determining Unit Nitrogen Fertilizer Rate and Crop Nitrogen Fertilizer Rate 386
4.2.2. Determining Crop Nitrogen Deficit 386
4.2.3. Determining First-Year Plant Available Nitrogen (PAN 0–1) 388
4.2.4. Determining Biosolids Application Rate or Agronomic Rate 388
4.2.5. Determining Maximum Allowable Biosolids Application 389
4.2.6. Determine Phosphorus Balance 389
4.3. Simplified Sludge Application Rate Determination 390
5. Operation and Maintenance 391
5.1. Operation and Maintenance Process Considerations 391
5.2. Process Control Considerations 391
5.3. Maintenance Requirements and Safety Issues 391
6. Normal Operating Procedures 392
6.1. Startup Procedures 392
6.2. Routine Land Application Procedures 392
6.3. Shutdown Procedures 392
7. Emergency Operating Procedures 392
7.1. Loss of Power or Fuel 392
7.2. Loss of Other Biosolids Treatment Units 392
8. Environmental Impacts 393
9. Land Application Costs 394
10. Practical Applications and Design Examples 394
10.1. Biosolids Pretreatment Before Agricultural Land Application 394
Solution 394
10.2. Advantages and Disadvantages of Biosolids Land Application 395
Solution 395
10.3. DesignWorksheet for Determining the Agronomic Rate 396
Solution 396
10.4. Calculation for Available Mineralized Organic Nitrogen 396
Solution 396
10.5. Risk Assessment Approach Versus Alternative Regulatory Approach to Land Application of Biosolids 396
Risk Assessment Approach 396
Alternative Regulatory Approach: Best Available Technology 400
Alternative Regulatory Approach: Noncontamination Approach 400
10.6. Tracking Cumulative Pollutant Loading Rates on Land Application Sites 401
Solution 401
10.7. Management of Nitrogen in the Soils and Biosolids 401
Solution 401
10.8. Converting Dry Tons of Biosolids per Acre to Pound of Nutrient per Acre 404
Solution 405
10.9. Converting Percent Content to Pound per Dry Ton 405
Solution 405
10.10. Calculating Net Primary Nutrient Crop Need 405
Solution 405
10.11. Calculating the Components of Plant Available Nitrogen in Biosolids 406
Solution 407
10.12. Calculating the First Year PAN 0–1 from Biosolids 407
10.12.1. Determining the First-Year PAN 0–1 from Lime-Stabilized Biosolids 407
Solution 407
10.12.2. Determining the First-Year PAN 0–1 from Aerobically Digested Biosolids 408
Solution 408
10.13. Calculating Biosolids Carryover Plant Available Nitrogen 408
10.13.1. Single Previous Biosolids Application 408
10.13.2. Multiple Previous Biosolids Applications 409
Solution 409
10.14. Calculating Nitrogen-Based Agronomic Rate 409
Solution 411
10.15. Calculating the Required Land for Biosolids Application 412
Solution 412
10.16. Calculating the Nitrogen-Based and the Phosphorus-Based Agronomic Rates for Agricultural Land Application 412
Step 1. Nitrogen-Based Agronomic Rate 413
Step 2. Phosphorus-Based Agronomic Rate 414
10.17. Calculating the Lime-Based Agronomic Rate for Agricultural Land Application 414
Solution 414
10.18. Calculating Potassium Fertilizer Needs 415
Solution 415
10.19. Biosolids Land Application Costs and Cost Adjustment 416
Solution 417
11. Glossary of Land Application Terms 418
Nomenclature 422
References 424
Appendix A 428
Appendix B 430
Appendix C 431
Chapter 8 433
Landfilling Engineering and Management 433
1. Introduction 433
2. Regulations and Pollutant Standards for Biosolids Landfilling 434
3. Types of Biosolids for Landfilling 437
4. Requirements of Biosolids Characteristics for Landfilling 439
4.1. Class A Pathogen Requirements 439
4.2. Class B Pathogen Requirements 441
4.3. Other Biosolids Characteristics for Landfilling 441
4.3.1. Reduction of Vector Attraction 441
4.3.2. Physical and Chemical Characteristics of Biosolids 443
4.4. Analytical Methods in Determining Biosolids Characteristics 445
5. Biosolids Treatment for Landfilling 445
5.1. Conditioning 446
5.2. Thickening 446
5.3. Stabilization 447
5.3.1. Alkali Stabilization 447
5.3.2. Digestion (Anaerobic and Aerobic) 448
5.3.3. Composting 449
5.3.4. Heat Drying 449
5.4. Dewatering 449
6. Design of Biosolids Landfilling 450
6.1. Landfilling Application for Biosolids 450
6.2. Biosolids Monofill 451
6.2.1. Site Selection 451
6.2.2. Methods of Biosolids Landfilling 452
6.3. Design Criteria 454
6.3.1. Area Requirement 454
6.3.2. Landfill Size Estimation 454
6.3.3. Landfill Liner 454
6.3.4. Gas Collection Requirement 455
6.3.5. Landfill Operation and Maintenance 455
6.3.6. Limitation of Landfilling 456
7. Case Study and Example 456
7.1. Future Trends in Biosolids Landfilling 456
7.2. Calculation Examples 457
References 459
Chapter 9 461
Ocean Disposal Technology and Assessment 461
1. Introduction 462
2. Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter—London Convention 1972 464
3. Waste Assessment Guidance 464
4. Waste Assessment Audit 465
5. Waste Characterization Process and Disposal Permit System 467
5.1. Assessment of Material for Disposal 467
5.2. Chemical Screening 468
5.3. Biological Testing 469
5.4. Ecological and Human Health Risk Assessment 472
5.5. Water Quality Issues 475
6. Disposal Site Selection 475
7. Disposal Site Monitoring 476
7.1. Acoustic Geophysical Surveys 477
7.1.1. Side-Scan Sonar 477
7.1.2. Multibeam Bathymetry 477
7.1.3. Sub-Bottom Profiler 478
7.2. Currents and Sediment Transport Survey 478
7.3. Chemical and Biological Sampling 478
7.4. Case Studies 479
7.4.1. Black Point Dredged Material Ocean Disposal Site, Saint John, New Brunswick, Canada 479
7.4.2. Amherst Cove Dredged Material Ocean Disposal Site, Prince Edward Island, Canada 481
8. Land-Based Discharges of Wastes to the Sea: Engineering Design Considerations 481
8.1. Ocean Outfall System 482
8.2. Initial Dilution 484
8.3. Dispersion Dilution 484
8.4. Decay Dilution 484
8.5. Outfall Design Criteria 485
8.5.1. Velocity of Liquid Waste in Pipeline 485
8.5.2. Diffuser Orientation, Size, and Length 485
8.6. Design Example 486
9. Marine Pollution Prevention (The City of Los Angeles Biosolids Environmental Management System) 487
10. Ocean Disposal Technology Assessment and Conclusions 489
Nomenclature 490
References 491
Chapter 10 496
Combustion and Incineration Engineering 496
1. Introduction to Incineration 496
2. Process Analysis of Incineration Systems 497
2.1. Stoichiometry 497
2.1.1. Gas Laws 498
Example 1 498
2.1.2. Material Balances 499
Example 2 499
Example 3 501
2.1.3. Heat Balances 502
Example 4 505
2.1.4. Equilibrium 507
Example 5 507
2.1.5. Kinetics 510
2.1.5.1. Kinetics of Carbon Monoxide Oxidation 510
2.1.5.2. Kinetics of Soot Oxidation 510
2.2. Thermal Decomposition (Pyrolysis) 511
2.2.1. Pyrolysis Time 512
2.2.2. Pyrolysis Products 513
2.2.3. Decomposition Kinetics 515
2.3. Mass Burning 516
2.4. Suspension Burning 519
2.5. Air Pollution from Incineration 519
2.5.1. Mineral Particulate 521
2.5.2. Combustible Solids, Liquids, and Gases 522
2.5.3. Acid Gases 524
2.5.4. Nitrogen Oxides 524
2.5.5. Air Toxics 525
2.6. Fluid Mechanics in Furnace Systems 527
2.6.1. Jet Behavior 528
2.6.2. Buoyancy 530
Case 1 531
Case 2 531
Example 6 532
3. Incineration Systems for Municipal Solid Waste 532
3.1. Receipt and Storage 536
3.2. Charging 537
3.3. Enclosures 539
3.4. Grates and Hearths 541
3.4.1. Stationary Hearth 541
3.4.2. Rotary Kiln 541
3.4.2.1. Transportable Configurations 544
3.4.2.2. O’Cconner Combustor Rotary Kiln Configuration 544
3.4.3. Stationary Grates 544
3.4.4. Mechanical Grates: Batch Operations 544
3.4.4.1. Cylindrical Furnace Grates 544
3.4.4.2. Rectangular Batch Furnace Grates 545
3.4.5. Mechanical Grates: Continuous Operations 545
3.4.5.1. Reciprocating Grate 545
3.4.5.2. Rocking Grate 546
3.4.5.3. Traveling Grate 546
3.5. Combustion Air 547
3.6. Flue Gas Conditioning 548
3.6.1. Cooling by Water Evaporation 549
3.6.2. Cooling by Heat Withdrawal 550
3.7. Air Pollution Control 550
3.8. Special Topics 555
3.8.1. Heat Recovery 555
3.8.1.1. Energy Markets 555
3.8.1.2. Corrosion Issues and Energy Recovery 557
3.8.2. Burning in Suspension 559
3.8.2.1. Spreader Stoker 559
3.8.2.2. Suspension Burning 560
3.8.3. Residue Processing and Disposal 561
3.8.3.1. Ash Conveyance and Discharge 562
3.8.3.2. Ducts, Boilers, and Breeching 563
3.8.3.3. Residue Properties 563
3.8.4. Pyrolysis and other Gasification Systems 564
3.8.4.1. Early Process Developments 564
3.8.4.1.1. Indirect Heating 564
3.8.4.1.2. Zoned Partial Combustion 564
3.8.4.1.3. Flash Pyrolysis 565
3.8.4.2. Gasification 565
3.8.4.2.1. General 566
3.8.4.2.2. TPS Termiska Processor–Gasification by Partial Combustion 567
3.8.4.2.3. SilvaGas Process—Gasification by Pyrolysis and Steam Reforming 569
3.8.4.2.4. Thermoselect® : Gasification of Raw MSW by Pyrolysis 571
3.8.5. Modular Incineration Systems for Municipal and Commercial Wastes 575
4. Thermal Processing Systems for Biosolids 577
4.1. Introduction 577
4.2. Objectives and General Approach 579
4.3. Low-Range (Ambient, 100DegreeC) Drying Processes 583
4.3.1. Drying Beds 584
4.3.2. Direct-Fired Systems 585
4.3.2.1. Flash Dryer 585
4.3.2.2. Rotary Dryer/Pelletizer 587
4.3.3. Indirect-Fired Systems 590
4.3.3.1. Porcupine, Bepex, and Other Dryers 590
4.3.3.2. Pelletech Dryer 591
4.4. Mid-Range (250Degree to 1000DegreeC or 300Degree to 1800DegreeF) Combustion Processes 593
4.4.1. General 593
4.4.1.1. Multiple Hearth Systems 594
4.4.1.2. Fluidized Bed Systems 596
4.4.2. Pyrolysis Mode Systems 598
4.4.2.1. Multiple Hearth Systems 598
4.4.2.2. Fluidized Bed Systems 600
4.4.3. Full Combustion Mode Systems 600
4.4.3.1. Multiple Hearth Systems 601
4.4.3.2. Fluidized Bed Systems 602
4.4.3.3. Infrared Systems 604
4.5. High-Range (> 1100DegreeC or >
4.6. Discussion 606
5. Economics of Incineration 607
5.1. General 609
5.2. Capital Investment 611
5.3. Operating Costs 611
6. An Approach to Design 611
6.1. Characterize the Waste 611
6.2. Lay Out the System in Blocks 614
6.3. Establish Performance Objectives 614
6.4. Develop Heat and Material Balances 614
6.5. Develop Incinerator Envelope 614
6.6. Evaluate Incinerator Dynamics 616
6.7. Develop the Design of Auxiliary Equipment 616
6.8. Review Heat and Material Balances 616
6.9. Build and Operate 616
Appendix: Waste Thermochemical Data 616
A.1. Refuse Composition 617
A.2. SolidWaste Properties 618
A.2.1. Thermochemical Analysis 618
A.3. Ash Composition 618
Nomenclature 618
References 619
Chapter 11 623
Combustion and Incineration Management 623
1. Introduction 623
1.1. Overview of Biosolids Incineration 623
1.2. Overview of the Dewatering Process 624
1.3. Overview of Air Pollution Control Devices 625
1.4. Overview of the Ash-Handling System 627
1.5. U.S. Federal and State Regulations 629
1.5.1. Overview of Emission Regulations for Sludge Incineration 629
1.5.2. Overview of 40 CFR Part 503 Subpart E 629
1.5.2.1. Mercury and Beryllium 629
1.5.2.2. Lead 631
1.5.2.3. Arsenic, Cadmium, Chromium, and Nickel 631
1.5.2.4. Total Hydrocarbons 632
1.5.2.5. Management Requirement for Biosolids Incineration 634
1.5.3. Other Regulations 637
2. Operation and Management of the Multiple Hearth Furnace 637
2.1. Process Description 637
2.2. Design and Operating Parameters 639
2.3. Performance Evaluation, Management, and Troubleshooting of the Multiple Hearth Furnace 642
2.3.1. Performance Evaluation 642
2.3.2. Management and Maintenance 644
2.3.3. Troubleshooting 645
3. Operation and Management of the Fluidized Bed Furnace 649
3.1. Process Description 649
3.2. Design and Operating Parameters 650
3.3. Performance Evaluation, Management, and Troubleshooting of the Fluidized Bed Furnace 651
3.4. Fluidized Bed Incinerator with Improved Design 653
3.5. Comparison Between Multiple Hearth and Fluidized Bed Furnaces 655
4. Other Incineration Processes 656
4.1. Electric Infrared Incinerators 656
4.2. Co-Incineration 656
4.2.1. Co-Incineration in Sludge Incinerators 657
4.2.2. Co-Incineration in Solid Waste Incinerators 658
4.3. Other Sludge Incineration Techniques 659
Nomenclature 660
References 660
Chapter 12 662
Beneficial Utilization of Biosolids 662
1. Introduction 662
2. Federal Biosolids Regulations 664
2.1. Background 664
2.2. Risk Assessment Basis of Part 503 665
2.3. Overview of Part 503 666
2.4. Requirements for Land Application 666
2.5. Requirements for Biosolids Placed on a Surface Disposal Site 668
2.6. Requirements for Pathogen and Vector Attraction Reduction 668
2.7. Requirements for Biosolids Fired in Incinerators 668
2.8. Enforcement of Part 503 and Reporting Requirements 670
2.9. Relationship of the Federal Requirements to State Requirements 670
3. Land Application of Biosolids 671
3.1. Perspective 671
3.2. Principles and Design Criteria 673
3.2.1. Preliminary Planning 673
3.2.2. Site Selection 674
3.2.3. Part 503 Criteria for Determination of Design Application Rates 674
3.3. Options for Meeting Land Application Requirements 674
3.3.1. Option 1: Exceptional Quality (EQ) Biosolids 675
3.3.2. Option 2: Pollutant Concentration (PC) Biosolids 677
3.3.3. Option 3: Cumulative Pollutant Loading Rate (CPLR) Biosolids 680
3.3.4. Option 4: Annual Pollutant Loading Rate (APLR) Biosolids 681
3.4. Site Restrictions, General Requirements, and Management Practices 683
3.5. Process Design 683
3.6. Facilities Design 684
3.7. Facility Management, Operations, and Monitoring 685
4. Surface Disposal of Biosolids 685
4.1. Perspective 685
4.2. Differentiation Among Surface Disposal, Storage, and Land Application 686
4.3. Pollutant Limits for Biosolids 686
4.4. Pathogens and Vector Attraction Reduction Requirements 687
4.5. Frequency of Monitoring Requirements 688
4.6. Regulatory Requirements for Surface Disposal of Domestic Septage 689
5. Incineration of Biosolids as an Energy Source 690
5.1. Perspective 690
5.2. Recovery of Energy from Biosolids 691
5.2.1. Treatment of Digester Gas 691
5.2.2. Gas-Burning Equipment 692
5.2.2.1. Corrosion Factors 692
5.2.2.2. Boilers 692
5.2.2.3. Prime Movers 692
5.2.2.4. Reciprocating Engines 693
5.2.2.5. Gas Turbines 694
5.2.3. Generators 694
5.3. Factors Affecting Heat Recovery 694
5.4. Pollutant Limits for Biosolids Fired in Incinerators 695
5.4.1. Beryllium and Mercury Pollutant Limits 695
5.4.2. Lead, Arsenic, Cadmium, Chromium, and Nickel Pollutant Limits 695
5.4.3. Total Hydrocarbons 696
5.4.4. Frequency of Monitoring Requirements for Biosolids Incineration 698
6. Other Uses of Wastewater Solids and Solids by-Products 699
7. Examples 700
7.1. Example 1: Determination of the Annual Whole Sludge (Biosolids) Application Rate (AWSAR) 700
7.2. Example 2: Determination of the Amount of Nitrogen Provided by the AWSAR Relative to the Agronomic Rate 700
Nomenclature 701
References 702
Chapter 13 706
Process Selection of Biosolids Management Systems 706
1. Introduction 706
2. The Logic of Process Selection 707
2.1. Identification of Relevant Criteria 708
2.2. Identification of System Options 708
2.3. System Selection Procedure 708
2.3.1. Base and Secondary Alternatives 708
2.3.2. Choosing a Base Alternative: First Stage 710
2.3.2.1. Determination of Practical Base Utilization/Disposal Options 710
2.3.2.2. Determine Practical Base Treatment Systems 711
2.3.2.3. Determine Practical Base Treatment/Utilization/Disposal Combinations 711
2.3.3. Choosing a Base Alternative: Second Stage 712
2.3.4. Third Stage 712
2.3.5. Subsequent Stages 716
2.4. Parallel Elements 716
2.5. Example of Process Selection at Eugene, Oregon 719
3. Sizing of Equipment 722
4. Approaches to Sidestream Management 725
4.1. Sidestream Production 725
4.2. Sidestream Quality and Potential Problems 726
4.3. General Approaches to Sidestream Problems 727
4.4. Elimination of Sidestream 727
4.5. Modification of Upstream Solids Processing Steps 727
4.6. Change in Timing, Return Rate, or Return Point 728
4.7. Modification ofWastewater Treatment Facilities 729
4.8. Separate Treatment of Sidestreams 730
4.8.1. Anaerobic Digester Supernatant 730
4.8.2. Thermal Conditioning Liquor 732
5. Contingency Planning 736
5.1. Contingency Problems and Their Solutions 736
5.2. Example of Contingency Planning for Breakdowns 737
5.2.1. Case A: All Units Available 737
5.2.2. Case B: Thickener Is Out of Service 738
5.2.3. Case C: One Digester Is Out of Service 739
5.2.4. Case D: One Dewatering Machine Is Out of Service 739
5.2.5. Case E: Truck Strike Lasting a Month 740
6. Site Variations 740
7. Energy Conservation 740
8. Cost-Effective Analyses 741
9. Checklists 742
10. U.S. Practices in Managing Biosolids 744
10.1. Primary Biosolids Processing Trains 744
10.2. Secondary Biosolids Processing Trains 749
10.3. Combined Biosolids Processing Trains 750
10.4. Types of Unit Processes 752
10.4.1. Anaerobic Digestion 752
10.4.2. Filtration 753
10.4.3. Centrifuges 753
10.4.4. Incineration 753
10.4.5. Other Processes 754
References 754
Appendix: Conversion Factors for Environmental Engineers 759
1. CONSTANTS AND CONVERSION FACTORS 760
2. BASIC AND SUPPLEMENTARY UNITS 798
3. DERIVED UNITS AND QUANTITIES 799
4. PHYSICAL CONSTANTS 801
5. PROPERTIES OFWATER 801
6. PERIODIC TABLE OF THE ELEMENTS (COMPLIMENTS OFTHE LENOX INSTITUTE OF WATER TECHNOLOGY) 802
Subject Index 803

Erscheint lt. Verlag 16.11.2010
Reihe/Serie Advances in Neurobiology
Contemporary Neuroscience
Zusatzinfo XIII, 347 p.
Verlagsort Totowa
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
Technik
Schlagworte Chemical synapses • endocytosis • Exocytosis • Molecular mechanisms • nervous system • neurons • Neuroscience • Neurotransmission • Presynaptic receptors
ISBN-10 1-59745-481-8 / 1597454818
ISBN-13 978-1-59745-481-0 / 9781597454810
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Skript 7 Enzyme; Vitamine; Organstoffwechsel; Molekularbiologie

von Endspurt Vorklinik

eBook Download (2023)
Georg Thieme Verlag KG
22,99