Free-Radical Retrograde-Precipitation Polymerization (FRRPP) (eBook)

Novel Concept, Processes, Materials, and Energy Aspects

(Autor)

eBook Download: PDF
2010 | 2010
XIV, 310 Seiten
Springer Berlin (Verlag)
978-3-642-03025-3 (ISBN)

Lese- und Medienproben

Free-Radical Retrograde-Precipitation Polymerization (FRRPP) - Gerard Caneba
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Providing insight on the free-radical retrograde-precipitation polymerization process, this volume examines the phenomenological aspects in comparison to other materials, such as nanoscale confinement behavior and nucleated hot spots.

Preface 6
Contents 9
1 Background 13
1.1 Phase Separation Thermodynamics 16
1.1.1 Thermodynamics of Polymer Solutions 16
1.1.1.1 Flory--Huggins Theory 16
1.1.1.2 Flory--Prigogine--Patterson Equation-of-State Theory 18
1.1.2 Liquid--Liquid Phase Equilibria of Polymer Solutions 19
1.1.2.1 Binodal Equations 19
1.1.2.2 Spinodal Equations 20
1.1.2.3 Measurement of Binodal and Spinodal Curves 21
1.1.3 The LCST Phenomenon in Experimental Polymer/Small-Molecule Systems 24
1.1.3.1 LCST and the FRRPP Process 25
1.1.3.2 Measurement of LCST-Based Ternary Phase Diagrams Using Cloudpoint Experimentation 27
1.1.4 Nomenclature 34
1.1.4.1 Alphabet Symbols 34
1.1.4.2 Subscripts 35
1.1.4.3 Superscripts 35
1.1.4.4 Greek Symbols 35
1.2 Polymer Transport Processes 36
1.2.1 Fluid Flow 36
1.2.2 Heat Transfer 38
1.2.3 Diffusional Mass Transfer 40
1.2.4 Nomenclature 47
1.2.4.1 Alphabets 47
1.2.4.2 Subscripts 48
1.2.4.3 Superscripts 48
1.2.4.4 Greek Symbols 48
1.2.4.5 Other Symbols 48
1.3 Conventional Polymerization Kinetics and Processes 49
1.3.1 Free-Radical Kinetics 50
1.3.2 Polymerization Processes 56
1.3.3 Copolymerization Kinetics 58
1.3.4 Nomenclature 59
1.3.4.1 Alphabets 59
1.3.4.2 Subscripts 59
1.3.4.3 Superscripts 59
1.3.4.4 Greek Symbols 60
1.3.4.5 Other Symbols 60
1.4 Phase Separation Kinetics in Nonreactive Polymer Systems 60
1.4.1 Phase Separation Mechanisms 60
1.4.1.1 Nucleation and Growth 62
1.4.1.2 Spinodal Decomposition 62
1.4.1.3 Coarsening 63
1.4.2 Mathematical Modeling of Structure Evolution in Phase Separating Polymer Systems 63
1.4.2.1 Binary Polymer/Solvent Systems 64
1.4.2.2 Ternary System 73
1.4.3 Experimental Efforts 76
1.4.3.1 Light Scattering Studies 77
1.4.3.2 Morphological Studies 83
1.4.4 Determination of Phenomenological Diffusivities from Numerical and Experimental Data 98
1.4.5 Nomenclature 100
1.4.5.1 Alphabets 100
1.4.5.2 Subscripts 101
1.4.5.3 Superscripts 101
1.4.5.4 Greek Symbols 101
1.4.5.5 Other Symbols 101
1.5 Phase Separation Kinetics in Reactive Polymer Systems 101
1.5.1 Derivation of the Spinodal Decomposition Equation with the Reaction Term 102
1.5.2 Numerical Simulation for Reactive Polymer Phase Separation Systems 104
1.5.2.1 Microscopic Calculation 106
1.5.2.2 Macroscopic Calculation 106
1.5.3 Results and Discussion 107
1.5.4 Nomenclature 108
1.5.4.1 Alphabets 108
1.5.4.2 Subscripts 109
1.5.4.3 Superscripts 109
1.5.4.4 Greek Symbols 110
1.5.4.5 Other Symbols 110
References 110
2 The FRRPP Concept 114
2.1 Connection to Nanotechnology 114
2.1.1 Formation of Reactive Polymer Nanoparticles 115
2.1.2 Agglomeration of Nanoparticles in a Stirred Vessel 118
2.1.3 Light Scattering 120
2.1.4 Proton and 13 C-NMR Studies 121
2.1.5 IR Imaging Study 123
2.1.6 Coil-to-Globule Transition 127
2.2 Local Heating and Energy Analysis of the FRRPP Process 128
2.2.1 Notional Concept 128
2.2.2 Case Studies 129
2.2.2.1 Case 1 -- Pressure Control Stirred-Tank Batch Reactor 129
2.2.2.2 Case 2 -- Mathematical Modeling of Hot Spots in Precipitation Polymerization Systems 132
2.2.3 Energy Analysis of Cases 1--2 135
2.2.3.1 Adiabatic Temperature Rise 135
2.2.3.2 Actual Overall Reactive Particle Temperature 136
2.2.3.3 Carbonization Temperatures 136
2.2.3.4 Data Interpretation 136
2.2.4 Glass Tube Reactor Experiment with Release of Reaction Fluid 137
2.2.4.1 Experimental Setup 137
2.2.4.2 Procedure 137
2.2.4.3 Results and Discussion 138
2.2.5 Nomenclature 141
2.2.5.1 Alphabets 141
2.2.5.2 Subscripts 141
2.2.5.3 Superscripts 141
2.2.5.4 Greek Symbols 142
2.2.5.5 Other Symbols 142
2.3 FRRPP Polymerization Kinetics 142
2.3.1 Polystyrene/Styrene-Based FRRPP Systems 142
2.3.1.1 Phase Diagram Results 142
2.3.1.2 Conversion and Molecular Weight Distributions 143
2.3.1.3 Studies of Radical Populations 152
2.3.2 Poly(Methacrylic Acid)/Methacrylic Acid/Water System 155
2.3.2.1 Results 155
2.3.2.2 Discussion of Results 158
2.4 Predictions of FRRPP Behavior Through the CoilGlobule Transition 159
2.4.1 Thermodynamics of Ternary Polystyrene/Styrene/Ether System 161
2.4.2 Mass Transport Phenomena 162
2.4.3 Calculation of Kinetic Parameters and Polymer Formation Behavior 166
2.4.4 Thermal Analysis 169
2.4.5 Nomenclature 173
2.4.5.1 Alphabets 173
2.4.5.2 Subscripts 174
2.4.5.3 Superscripts 174
2.4.5.4 Greek Symbols 174
2.4.5.5 Other Symbols 174
2.5 Physicochemical Quantitative Description of FRRPP 175
2.5.1 Nomenclature 181
2.5.1.1 Alphabets 181
2.5.1.2 Subscripts 181
2.5.1.3 Superscripts 181
2.5.1.4 Greek Symbols 181
2.5.1.5 Other Symbols 181
References 182
3 Polymerization Processes 184
3.1 Statistical Polymerizations (Homopolymerizations and Multipolymerizations) 184
3.1.1 Introduction 184
3.1.2 Theory 185
3.1.2.1 Statistical Effects of Reactivity Ratios 185
3.1.2.2 Effects of Phase Behavior 186
3.1.3 Experimental 187
3.1.3.1 S/AA System 187
3.1.3.2 VA/AA System 188
3.1.4 Results and Discussion 190
3.1.4.1 S/AA System 190
3.1.4.2 VA/AA System 192
3.1.5 Nomenclature 197
3.1.5.1 Alphabets 197
3.1.5.2 Subscripts 197
3.1.5.3 Superscripts 199
3.1.5.4 Greek Symbols 199
3.1.5.5 Other Symbols 199
3.2 Staged Multipolymerizations 199
3.2.1 Straightforward Addition of Another Monomer(s) 200
3.2.2 Interstage Rapid Cooling Method 201
3.2.3 Emulsion FRRPP 203
3.2.4 Emulsification of First-Stage Radicals 203
3.2.5 Radicalized Polymer Particulates 206
References 209
4 Product Materials 210
4.1 Homopolymers and Statistical Multipolymers 210
4.1.1 Homopolymers 210
4.1.1.1 Polystyrene (PS) 210
4.1.1.2 Poly(methacrylic acid) (PMAA) 213
4.1.1.3 Poly(vinylidene chloride) (PVDC) 213
4.1.2 Statistical Multipolymers 214
4.1.2.1 PS-Based Statistical Multipolymers 214
4.1.2.2 VDC-Based Statistical Multipolymers 217
4.1.2.3 Poly(vinyl acetate)-Based Statistical Multipolymers 218
4.2 Block Multipolymers 220
4.3 Reactive Polymer Intermediates 224
4.3.1 PS-Based Intermediates 224
4.3.2 VDC Copolymer-Based Intermediates 225
4.3.3 VA/AA-Based Intermediates 233
4.4 Polymer Surfactants 234
4.5 Polymer Foams from the FRRPP Process 239
4.5.1 Vinyl Acetate-Acrylic Acid Copolymer Foams 239
4.5.2 Vinylidene Chloride Copolymer-Based Foams 239
4.5.3 VDC Multipolymer Nanocomposites in Polyurethane Foams 245
4.6 Coatings 249
4.6.1 Polystyrene-Poly(Dimethyl Siloxane) (PS--PDMS) Coatings 249
4.6.2 VA/AA with SWCNTs 255
4.7 Bottom-Up Micropatterning of Polymers 258
References 261
5 Related Energy Application of FRRPP Products 263
5.1 Surfactant-Based Waterflooding for Subterranean Oil Recovery 263
5.1.1 Introduction 263
5.1.2 Theory 271
5.1.3 Experimental 271
5.1.3.1 Sandpack Oil Recovery Studies 271
5.1.3.2 Core Rock Study 273
5.1.4 Results and Discussion 273
5.2 Foamflooding Subterranean Enhanced Oil Recovery 275
5.2.1 Introduction 275
5.2.2 Experimental 277
5.2.3 Results and Discussion 277
5.3 Bitumen Recovery from Surface Sources 282
5.3.1 Introduction 282
5.3.2 Experimental 283
5.3.2.1 Extraction of Heavy Crude Oil from Standard Sand 283
5.3.2.2 Tar Sands Studies 284
5.3.3 Results and Discussion 284
References 289
6 Outlook 291
6.1 Polymers for Defense and Homeland Security 291
6.1.1 Labeled Surfactants 291
6.1.2 Specialty Surfaces 294
6.1.3 Other Applications 296
6.2 Conceptual Connections to Nuclear Material Systems 297
6.2.1 Energy-Producing Isotopes 297
6.2.2 Nuclear Waste Materials 300
6.3 Fuel Cell Membranes 303
6.3.1 Proton Exchange Membrane (PEM) Fuel Cells 303
6.3.2 Hydroxide Exchange Membrane Alkali Fuel Cells (HEMFCs) 304
6.4 Medical Applications 305
6.4.1 Nanoparticle Polymers 305
6.4.1.1 Homogeneous Polymer Nanoparticles 305
6.4.1.2 Heterogeneous Nanoparticles 305
6.4.2 Patterned Polymers 306
References 306
Appendix 308
Index 315

Erscheint lt. Verlag 8.1.2010
Zusatzinfo XIV, 310 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Maschinenbau
Schlagworte Chemistry • Energy confinement • extraction • FRRPP • fuel cell • Industrial Chemistry • Materials • Phase separation • Polymer • Polymers • thermodynamics
ISBN-10 3-642-03025-4 / 3642030254
ISBN-13 978-3-642-03025-3 / 9783642030253
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99