Small Satellite Missions for Earth Observation (eBook)

New Developments and Trends
eBook Download: PDF
2010 | 2010
XX, 455 Seiten
Springer Berlin (Verlag)
978-3-642-03501-2 (ISBN)

Lese- und Medienproben

Small Satellite Missions for Earth Observation -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book was compiled from contributions given at the 7th IAA Symposium on Small Satellites for Earth Observation, May 4-8, 2009, Berlin (IAA - International Academy of Astronautics). From the 15 sessions for oral presentations and two poster sessions, 52 contributions were selected which are representative for the new developments and trends in the area of small satellites for Earth observation. They re ect the potentials of a diversity of missions and related technologies. This may be based on national projects or international co-operations, single satellites of constellations, pico-, nano-, micro- or mini-satellites, developed by companies, research institutions or agencies. The main focus is on new missions to monitor our Earth's resources (Part I), and the environment in which our Earth is emb- ded (Part II). Part III deals with distributed space systems, a unique feature of small satellites and in most cases impractical to do with large satellites. Here we concentrate on constellations of satellites with focus on future missions relying on co-operating satellites. For all the new developments and projects we need well e- cated specialists coming from the universities. Many universities included already the development and implementation of small satellites in their curriculum. The u- versity satellites chapter (Part IV) shows the high quality which is already reached by some of the universities worldwide.

Dr. Rainer Sandau, PhD 1997 and habilitation 1990, is Chief Scientist at the German Aerospace Center (DLR) in Berlin, Germany. He has over 25 years of experience in airborne and spaceborne remote sensing activities.

Prof. Dr. Hans-Peter Roeser is director of the Institute of Space Systems at the University of Stuttgart and head of the German SOFIA Institute.

Arnoldo Valenzuela Ph.D., Chief Scientific Officer, has served in this capacity at Media Lario Technologies since January 2004. From 1999 until 2003 he was president and CEO; and from 1995 to 1998, Dr. Valenzuela served as the Company's managing director. Prior to joining Media Lario Technologies, Dr. Valenzuela was director of scientific programs and responsible for business development and marketing strategy at Kayser-Threde GmbH, a German provider of complete space systems from launch to recovery.
Also in Germany, from 1971 through 1994, Valenzuela was senior scientist and leading investigator at the Max Planck Institut (MPE).
From 1986 until 1988, Valenzuela was president of the Argentine National Commission for Space Research. A board member of Argentina's National Commission for Space Research, Valenzuela was the Argentine representative to the Committee on Peaceful Uses of Outer Space within the United Nations' General Assembly.
Internationally recognized for scientific achievement, Valenzuela has garnered awards from the International Academy of Astronautics (2), NASA (2), and European Space Agency (1). He has three international patent applications and is an active member of the International Academy of Astronautics, Academy of Space Sciences: Argentina, and many professional scientific organizations.
In addition to his current responsibilities at Media Lario Technologies, Valenzuela serves as chairman of both the Commission IV and the Committee on Small Satellite Missions for the International Academy of Astronautics.
Valenzuela holds a Ph.D. in physics and a M.S. in physics from the National University of Cuyo, Argentina. He received a B.Sc. in electronics from the University of Córdoba, Argentina.

Dr. Rainer Sandau, PhD 1997 and habilitation 1990, is Chief Scientist at the German Aerospace Center (DLR) in Berlin, Germany. He has over 25 years of experience in airborne and spaceborne remote sensing activities. Prof. Dr. Hans-Peter Roeser is director of the Institute of Space Systems at the University of Stuttgart and head of the German SOFIA Institute.Arnoldo Valenzuela Ph.D., Chief Scientific Officer, has served in this capacity at Media Lario Technologies since January 2004. From 1999 until 2003 he was president and CEO; and from 1995 to 1998, Dr. Valenzuela served as the Company's managing director. Prior to joining Media Lario Technologies, Dr. Valenzuela was director of scientific programs and responsible for business development and marketing strategy at Kayser-Threde GmbH, a German provider of complete space systems from launch to recovery. Also in Germany, from 1971 through 1994, Valenzuela was senior scientist and leading investigator at the Max Planck Institut (MPE). From 1986 until 1988, Valenzuela was president of the Argentine National Commission for Space Research. A board member of Argentina's National Commission for Space Research, Valenzuela was the Argentine representative to the Committee on Peaceful Uses of Outer Space within the United Nations' General Assembly. Internationally recognized for scientific achievement, Valenzuela has garnered awards from the International Academy of Astronautics (2), NASA (2), and European Space Agency (1). He has three international patent applications and is an active member of the International Academy of Astronautics, Academy of Space Sciences: Argentina, and many professional scientific organizations. In addition to his current responsibilities at Media Lario Technologies, Valenzuela serves as chairman of both the Commission IV and the Committee on Small Satellite Missions for the International Academy of Astronautics. Valenzuela holds a Ph.D. in physics and a M.S. in physics from the National University of Cuyo, Argentina. He received a B.Sc. in electronics from the University of Córdoba, Argentina.

Preface 5
Contents 6
Contributors 11
Part I New Earth Observation Missions 22
Overview on CNES Micro Satellites Missions: In Flight, Under Development and Next 23
1 Introduction 23
2 MYRIADE Genesis 23
3 In Flight Missions Highlights 26
4 CNES Missions Under Development 31
5 CNES Missions Under Study 36
6 Return of Experience 36
7 2009 A Decisive Year for MYRIADE Product Line 37
8 Conclusion 37
Further Reading 38
Small Earth Observing Satellites Flying with Large Satellites in the A-Train 39
1 Introduction 39
2 A-Train Description 39
2.1 Aqua 40
2.2 Aura 41
2.3 Parasol 41
2.4 Calipso 42
2.5 CloudSat 42
3 Constellation Advantages 42
4 A-Train Concurrent Imaging Examples 44
5 Coordinated Constellation Operations 45
6 A-Train Flexibility to Accommodate Recent Changes 46
7 Summary 46
8 Additional Information 47
8 Acronyms 47
INTASat-1 First Earth Observation Mission 49
1 Introduction 50
2 Nanosat and MicroSat Mutual Relationship Benefits 51
3 INTASat Mission Requirements 57
4 MicroSat Project Team 59
5 System Design Status 60
6 OBDH S/S 62
7 Communications S/S 62
8 Conclusions 65
References 65
VENS (Vegetation and Environment Monitoring on a New Micro Satellite) 66
1 Introduction 66
2 The VENS Missions 67
2.1 Scientific Mission 67
2.1.1 Mission Description 67
2.1.2 VM1 Orbit 68
2.1.3 Image Quality Requirements 68
2.2 Technological Mission 71
2.2.1 Mission Description 71
2.2.2 IHET Verification 71
2.2.3 IHET Validation 72
2.2.4 VM3 Orbit 73
3 The VENS System 73
4 Cooperation Basis 73
5 Satellite Description 74
5.1 Overall Presentation 74
5.2 Scientific Mission Payload 76
5.2.1 Camera Description 76
5.3 Technological Mission Payload 78
5.3.1 HET-300 Thruster 78
6 Ground Segments 78
6.1 Image Ground Segment 78
6.1.1 Top Level Functions 78
6.1.2 Mission Planning 79
6.1.3 Image Products 79
6.1.4 Level 1 Processing 79
6.1.5 Level 2 and 3 Processing 80
6.2 Ground Control Station (GCS) 80
6.2.1 Top Level Functions 81
6.2.2 Satellite Operations 81
6.3 Technological Mission Center 82
7 Launcher 83
8 Project Status (at Beginning of 2009) 83
Further Reading 83
The Ulingo Mid-Low Latitudes Observation (MILO) Mission 85
1 Introduction 85
2 Mission Design 86
2.1 Orbit Characteristics 86
2.2 Payload Description 89
2.3 Ground Segment 89
3 Conclusions 89
References 90
The Italian Precursor of an Operational Hyperspectral Imaging Mission 91
1 Overview of PRISMA Programme 91
2 System Description 92
2.1 Mission 92
2.2 Satellite 93
2.2.1 Platform 94
2.2.2 Instrument 95
2.3 Ground Segment 97
3 Budgets and Performance 98
3.1 Revisit Time and Relook Time 98
3.2 Data Latency 98
3.3 Imaging Daily Capability 99
4 Programmatics 99
Part II Earth Environment Missions 100
Space System Radiomet for GLONASS/GPS Navigation Signal Radio Occultation Monitoring of Lower Atmosphere and Ionosphere Based on Super-Small Satellites 101
1 Now-Existing Space Systems for Radio Occultation Monitoring and Restrictions of Their Efficiency. 101
2 Concept of Radiomet Low-Orbit Space System 104
3 Modelling of Radio Occultation Monitoring System Radiomet 106
4 Conclusion 107
References 110
The Study of Electromagnetic Parameters of Space Weather, Micro-Satellite Chibis-M 111
1 Introduction 111
2 Wave Experiment on Board the Micro-Satellite Chibis-M 112
3 Registration of Event and the Modes of PSA Work 115
3.1 Basic Mode '' ''Mode A'' 115
3.2 Extended Mode '' ''Mode B'' 116
3.3 Programmed Mode of Data Collection 117
4 Conclusion 117
References 117
SEPSAT A Nanosatellite to Observe Parameters of Space Weather 119
1 Introduction 119
2 Mission Objectives 120
2.1 Variability of Solar Radiations 120
2.2 Composition and Physics of the Upper Atmosphere in Models 120
2.3 Composition of Solar Atmosphere and Generation of EUV-Radiation in Lower Chromosphere up to Corona 120
2.4 Propagation of GNSS Signals in Ionosphere 120
3 SEPSAT Design 120
3.1 Mission 121
3.2 Spacecraft Platform 121
3.3 Payload 121
3.4 Payload Control and On Board Data Handling 123
3.5 Communication 124
3.6 Thermal Control 124
3.7 Attitude Determination and Control System (ADCS) 125
3.8 Power Subsystem 126
3.9 Structure 127
4 Conclusion 127
References 127
Small Satellite Constellations for Measurements of the Near-Earth Space Environment 128
1 Introduction 128
2 Investigations to Date 129
3 Cubesats as a Mission Enabler 130
3.1 Instrument Description 131
3.2 Spacecraft Design 133
3.3 Mission Design 134
4 Conclusions and Future Work 135
References 136
Part III Distributed Space Systems 137
Satellite Formation for a Next Generation Gravimetry Mission 138
1 Introduction 138
2 Earth Gravity Measurement Techniques 139
3 Mission Scenario Outline 139
4 The Metrology System 141
5 The Control System 142
5.1 Requirements 143
5.2 Formation and Drag-Free Control 144
5.3 Attitude Control and Laser Beam Pointing 145
References 146
EO Small Satellite Missions and Formation Flying 147
1 Introduction 147
2 TOPOLEV Mission 147
3 C-PARAS Mission 149
4 AERL Mission 152
5 Spacecraft Design 154
6 Launcher and Orbit 155
7 Summary 155
Relative Trajectory Design for Bistatic SAR Missions 157
1 Introduction 157
2 Cross-Track INSAR Formation Design 158
3 Radargrammetric BSAR Formation Design 161
4 Conclusions 164
References 166
Conceptual Design of the FAST-D Formation Flying Spacecraft 167
1 Introduction 167
2 FAST-D Conceptual Design 168
2.1 Overall System Design 168
2.2 Attitude Determination and Control Subsystem 169
2.3 Space-Based Computing 171
3 Science Payloads 172
3.1 SPEX 172
3.2 SILAT 173
4 Conclusions 174
References 175
Earth Observation Using Japanese/Canadian Formation Flying Nanosatellites 176
1 History 176
2 Introduction 177
3 On-Orbit Demonstration of Novel Technologies 177
3.1 Autonomous Formation Flight Using Differential Drag 177
3.2 Relative Navigation Using Commercial GPS Receiver 178
3.3 Miniature Far InfraRed RADiometer (Mirad) 179
4 JC2SAT Operations 181
4.0 Phase I: Stacked Phase -- 1/2 Month 181
4.0 Phase II: Preparation Phase -- 1/2 Month 182
4.0 Phase III: Autonomous Formation Flight Phase -- 5 Months 182
4.0 Phase IV: Mirad Phase -- 6 Months 182
5 Collaboration Between JAXA and CSA 182
5.1 Set-Up Between JAXA and CSA 183
5.2 Development Philosophy 183
5.3 One Single United Team 184
5.4 CSA -- JAXA Communications 184
6 Conclusion 184
References 185
A Bi/Multi-Static Microsatellite SAR Constellation 186
1 Introduction 186
2 Micro SAR Satellite Mission Definition 187
3 Microsatellites SAR Payload Design Issue and Trade Offs 188
3.1 Frequency Selection 188
3.2 Polarization 190
3.3 Imaging Mode, Swath and Coverage 190
3.4 Platform 191
3.5 Orbit Design (Altitude and Inclination) 191
4 Bi-static Configuration Design Issue and Trade Offs 192
4.1 Synchronisation 194
4.2 Waveform Consideration (PR or CW) 194
5 Conclusions 195
References 196
Mission Design of the Dutch-Chinese FAST Micro-Satellite Mission 198
1 Introduction 198
2 Mission Objectives 199
2.1 Technology Demonstration 199
2.2 Science 199
2.3 Education 199
3 Mission Architecture 199
4 Mission Phases 200
4.1 Launch and Early Operations 201
4.2 Science Mode A1 201
4.3 Science Mode A2 202
4.4 Science Mode B 203
5 Increasing Scientific Data Return 203
5.1 Strategies for SPEX 204
5.2 Strategies for SILAT 204
6 Conclusions 205
References 205
Part IV University Satellites 206
SPRITE-SAT: A University Small Satellite for Observation of High-Altitude Luminous Events 207
1 Introduction 207
2 Spacecraft Design 209
2.1 System Overview 209
2.2 Onboard Science Instruments 209
2.3 Attitude Sensors and Magnetic Torquers 211
2.4 Deployable Mast 212
2.5 Attitude Control 213
2.6 Ground Station 214
3 Initial Operation and Results 214
References 216
SwissCube: The First Entirely-Built Swiss Student Satellite with an Earth Observation Payload 217
1 Introduction 217
2 SwissCube 218
3 The Earth Observation Payload 218
4 Conclusions 222
References 223
German Russian Education Satellite Mission Outline and Objectives 224
1 Mission Outline 225
2 System Outline 225
3 Technology Demonstration 227
4 Communication Subsystem 228
5 International Cooperation 230
6 Conclusion 230
University Microsatellites Equipped with an Optical System for Space Debris Monitoring 231
1 Introduction 231
2 Systems for Space Debris Observation 232
3 Ground Based Optical Systems and Orbiting Systems Characteristics 233
3.1 Atmospheric Effects in the Optical Band 233
3.2 Seeing and Angular Resolution 234
3.3 The Ideal Resolution and Field of View 235
3.4 Atmospheric Extinction 235
3.5 Phase Angle and Baseline 237
4 Space Based Telescope vs. Ground Based Telescope 238
4.1 Results 238
5 Conclusions 240
References 240
A First-MOVE in Satellite Development at the TU-Mnchen 242
1 Mission and Configuration of the First-MOVE Satellite 242
2 Progress and Timeline for the First-MOVE Satellite 242
3 Innovative Concepts to Increase Reliability by Design 244
3.1 Failure and Risk Analysis as Prerequisites for Robust Design 245
3.2 Testing 246
3.3 Reset Strategies 246
3.4 Software Maintenance 248
3.5 Securing the Counter Measuring Technologies from Hazardous Behaviour 249
4 How to Learn Lessons and React 249
5 Future Prospects 249
References 251
Design of a Small Educational Satellite for the Italian High School Students: The EduSAT Project 253
1 Introduction 253
2 EduSAT: System Architecture 254
3 Main Subsystems 256
3.1 Structure 256
3.2 Electrical Power Subsystem 257
3.3 Attitude Control Subsystem 259
3.4 Communication and OBDH Systems 260
4 Conclusions 260
References 260
Testing of Critical Pico-Satellite Systems on the Sounding Rocket Rexus-4 262
1 Introduction 262
2 Background 263
3 Method 263
3.1 Components 264
3.1.1 Deployment Switch Verification Assembly 265
3.1.2 Solar Panel Verification Assembly 265
3.1.3 Electronics Module 267
4 Launch Campaign 267
5 Results 268
6 Discussion 269
References 270
Laboratory Facility for Simulation and Verification of Formation Motion Control Algorithms 272
1 Introduction 272
2 Mock-Up Design 273
3 The Mock-Up Cooperation Gear and Relative Navigation Modes 276
4 The Mock-Up Configuration Maintenance Algorithm 277
4.1 Control Task Statement 278
4.2 The Mock-Up Control Algorithm 280
5 Conclusion 280
References 282
Asynchronous Parallel Reactive System for Intelligent Small Satellite on-Board Computing Systems 283
1 Introduction 283
2 Hardware Platform 284
3 Control Algorithm Architecture 285
3.1 Multi-Agent System 286
3.2 Asynchronous Parallel Reactive System 287
4 Simulation and Verification 289
5 Conclusions and Future Work 290
References 292
NanoSiGN Nanosatellite for scientific interpretation of GNSS dual-frequency signals in the low Earth orbit 293
1 Introduction 293
1.1 Scientific Background 294
1.2 Primary Objectives 294
1.3 Technical Requirements 294
2 NanoSiGN Design 294
2.1 Functional System Overview 296
2.2 Attitude Determination and Control 296
2.3 Electrical Power Supply 298
2.4 Communications 299
2.5 Thermal 300
2.6 Payload 300
3 Conclusion 300
References 301
Part V Instruments and Technologies 302
The Vegetation Instrument for the PROBA-V Mission 303
1 Introduction 303
2 General Instrument Concept Description 304
3 The TMA Telescope Development 305
4 The SWIR Detector Development 307
References 311
Software Defined LFM CW SAR Receiver for Microsatellites 312
1 Introduction 312
2 Problems of Pulsed SARs 313
3 Linear Frequency Modulated CW (LFM CW) SAR 314
3.1 SAR Antenna 314
3.2 Challenges for Spaceborne LFM CW SAR 315
3.2.1 Antenna Isolation 315
3.2.2 Effect of Nadir Echo Due to First Side Lobe 316
3.2.3 Use of a Software Defined Receiver Architecture 317
4 Initial Simulation Results 318
5 Future Work 319
6 Conclusions 320
References 321
PhytoMapper Compact Hyperspectral Wide Field of View Instrument 322
1 Introduction 322
2 Instrument Design 323
2.1 Optics 323
2.2 VNIR Detector 323
2.3 Linearly Variable Filter 325
3 Applications 327
3.1 Extending the Analysis of Crops 328
3.2 Planetary Observations 328
4 Instrument PERFORMANCES 329
Development of Spaceborne Small Hyperspectral sensor HSC-III for Micro Satellite 332
1 Introduction 332
2 Hyperspectral Sensor Outline 333
3 Breadboard Model of HSC-III Optics Instrument 334
4 Mission Data Handling Unit 336
5 On-Orbit Calibration Equipment 338
6 Conclusion 340
References 341
Towards a Miniaturized Photon Counting Laser Altimeter and Stereoscopic Camera Instrument Suite for Microsatellites 342
1 Introduction 342
2 Mission Overview 343
2.1 The FAST Mission 343
3 Scientific Objectives 343
4 Description of SILAT Integrated Payload Suite 344
4.1 SILAT Features 345
4.2 Earth Orbit Optimization -- Radiation Shielding 345
5 Performance of SILAT for Earth Observation 345
5.1 Orbital Parameters 346
5.2 Instrument Performance 346
5.3 HRC Performance 347
5.4 SCAM Performance 348
5.5 LAT Performance 348
6 Earth Orbit Optimization Breadboarding Results 349
7 Other Micropayloads 350
7.1 HIBRIS 350
7.2 MPS 350
8 Summary and Outlook 351
References 351
A Plan of Spaceborne ISAR Satellite Imaging System Aiming at Space Objects 352
1 Introduction 352
2 Mission Concept and Requirements 353
2.1 D Radar Parameter Selection 355
3 Imaging Simulation 355
4 Conclusion 357
References 360
Increasing the Data Volume Returned from Small Satellites 362
1 Introduction 362
2 Communication System Trades 363
3 Downlink Chain Development 365
4 Data Recorder 367
5 X-Band Downlink 367
6 Antenna Pointing Mechanism 368
7 Conclusions 369
8 Further Reading 371
Integrated Design Based Plug-and-Play Small SAR Satellite Project 372
1 Introduction 372
2 Planning for Small SAR Satellite 373
3 Integrated Electronic System 373
4 Plug and Play Payload 374
5 Conclusion 376
References 376
Part VI Attitude Control Systems 377
Star Sensor Development Based on the TUBSAT Experience 378
1 In-Orbit Experiments with TUBSAT-A and MAROC-TUBSAT 378
1.1 TUBSAT-A 378
1.2 MAROC-TUBSAT 380
2 TUBSAT Star Sensor Design Principle 382
2.1 Hotspots and the Difference Image 382
2.2 Star Extraction, Accuracy and the Panorama Image 382
2.3 Computation Speed, Software and the Star Catalogue 383
3 Latest Generation: STS-500 385
3.1 Design Requirements 385
3.2 Hardware Design 385
3.3 STS-500 Performances 386
4 Summary 388
References 388
Small Sensors Big Choices 390
1 Introduction 390
2 Miniaturisation: A First Step 391
3 Miniaturisation: Implementation Options 394
4 Conclusion 398
5 Further Reading 398
Robust and Fault Tolerant AOCS of the TET Satellite 400
1 Introduction 400
2 Overview of TET-1 AOCS 401
2.1 AOCS Hardware Overview 402
2.2 AOCS Software Overview 403
3 Control Core The EPC Module 404
3.1 Estimator Module 404
3.2 Predictor Module 404
3.3 Controller Module 405
3.3.1 Attitude Control 405
3.3.2 Momentum Dumping 405
3.3.3 Compensation of Perturbation 405
3.3.4 Summarization of Control Torque 406
4 FDIR Architecture 406
4.1 Onboard Configuration Management 406
4.2 Fault Detection 407
4.3 Surveillance Module 408
5 Verification of AOCS 408
6 Summary 408
References 408
Implementation of the T 3 PS in the Delfi-n3Xt Satellite 410
1 Introduction 410
2 The Delfi-n3Xt Project 411
3 The T 3 Micropropulsion System 412
4 Experiment Description 413
5 Interface Control 416
6 Delfi-n3Xt T 3 PS Interfaces 416
6.1 Disturbance Torque 416
6.2 Static Envelope (Incl. Location) 418
6.3 Command and Data Handling 420
7 Interface Verification 420
8 Conclusions and Recommendations 421
References 422
A Novel AOCS Cold-Gas Micro-Propulsion System Design and Applications to Micro and Nano Satellites 424
1 Introduction 424
2 Propulsion System Architecture 425
3 Applications 427
3.1 Microsatellite Attitude and Orbit Control System 427
3.2 Nanosatellite Position and Attitude Control System 432
References 434
Part VII Navigation 435
Navigation Needs for ESAs Earth Observation Missions 436
1 Introduction 436
2 Altimetry in Sentinel-3 437
3 Other Sentinels and Candidate Earth Explorers 438
4 Gravity Field Monitoring in Post-Goce 438
5 Radio Occultation in Post-EPS 439
6 Main GNSS Receiver Drivers 440
7 Technology Building Blocks to Achieve the Requirements 440
7.1 RF Down Conversion and Analogue to Digital Conversion 441
7.2 AGGA-4: Core Device for the Next Decade 441
8 Conclusions 443
References 444
Benefits of Galileo for Future Satellite Missions 445
1 Introduction 445
2 Galileo 445
2.1 Galileo Mission 446
2.2 Galileo System Architecture 446
2.3 Galileo Signals and Frequencies 447
2.4 Galileo Services 447
2.5 Galileo Performance 448
2.6 Galileo Interoperability 448
2.7 Galileo Implementation Plan 448
3 Galileo for Space Applications 448
3.1 GNSS Space Applications -- General overview 449
3.2 Galileo and Space Users 450
3.3 Galileo Use in Space -- Regulation 450
3.4 Galileo -- Potential Benefits for Space Users 450
4 Conclusions and Outlook 451
References 452
Differential GPS: An Enabling Technology for FormationFlying Satellites 453
1 Introduction 453
2 Relative Navigation Using Differential GNSS 455
3 GPS Based Navigation of the PRISMA Mission 456
4 TanDEM-X 458
References 460
GPS-Based Relative Navigation in Earth Observation Missions Relying on Cooperative Satellites 462
1 Introduction 462
2 Filtering Approach 463
3 Numerical Simulations 466
4 Conclusions 469
References 470
Index 472

Erscheint lt. Verlag 23.1.2010
Zusatzinfo XX, 455 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik Luft- / Raumfahrttechnik
Schlagworte astronautics • global navigation satellite system • Remote Sensing/Photogrammetry • Satellite • Spaceborne systems • Space Science • Space Technology • swarm satellites • Technology demonstration • Vegetation
ISBN-10 3-642-03501-9 / 3642035019
ISBN-13 978-3-642-03501-2 / 9783642035012
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Olaf Kühne; Florian Weber; Karsten Berr; Corinna Jenal

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
109,99

von Wolfgang Torge; Jürgen Müller; Roland Pail

eBook Download (2023)
De Gruyter (Verlag)
69,95