Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (eBook)
XI, 560 Seiten
Springer Berlin (Verlag)
978-3-540-35888-6 (ISBN)
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.
Preface 5
References 8
Contents 9
Computation of Invariant Manifolds 12
A New Model Reduction Method for Nonlinear Dynamical Systems Using Singular PDE Theory 13
1 Introduction 13
2 Mathematical Preliminaries 15
3 Main Results 16
4 Conclusions 23
References 23
A Versatile Algorithm for Computing Invariant Manifolds 26
1 Introduction 26
2 Invariant Manifolds 28
3 Discrete Sections 33
4 The Discrete Graph Transform 36
5 Numerical Implementation 40
6 An Application 43
References 44
Covering an Invariant Manifold with Fat Trajectories 47
1 Introduction 47
2 Basic Definitions 49
3 Fat Trajectories 51
4 Flying Disks 52
5 Interpolation 56
6 Example 57
References 61
Ghost ILDM-Manifolds and Their Identification 63
1 Introduction 63
2 Theoretical Background 64
3 Ghost ILDM-Manifolds Examples 75
4 Criteria for Ghost -Manifolds Identification 82
5 Conclusions 85
References 85
Dynamic Decomposition of ODE Systems: Application to Modelling of Diesel Fuel Sprays 88
1 Introduction 88
2 Dynamic Fast-Slow Decomposition: Underlying Philosophy 90
3 Decomposition of the System of Equations 92
4 Choice of Decomposition 95
5 Application 97
6 Conclusions 102
References 102
Model Reduction of Multiple Time Scale Processes in Non- standard Singularly Perturbed Form 105
1 Introduction 105
2 Standard Singularly Perturbed Form 107
3 Nonstandard Singularly Perturbed Form 109
4 Application 114
5 Conclusion 118
References 118
Coarse-Graining and Ideas of Statistical Physics 120
Basic Types of Coarse-Graining 121
1 Introduction 121
2 The Ehrenfests’ Coarse-Graining 127
3 Coarse-Graining by Filtering 153
4 Errors of Models, e-trajectories and Stable Properties of Structurally Unstable Systems 166
5 Conclusion 173
References 175
Renormalization Group Methods for Coarse- Graining of Evolution Equations 181
1 Introduction and Basic Formalism 181
2 RSRG for the Selection of Relevant Degrees of Freedom 186
3 DMRG and the Time-Evolution of Strongly Correlated Many- Body Systems 194
4 Conclusions 207
References 207
A Stochastic Process Behind Boltzmann’s Kinetic Equation and Issues of Coarse Graining 211
1 Motivation and Problem 211
2 Markov Processes 214
3 Nonlinear Fokker-Planck Equations 215
4 Boltzmann’s Kinetic Equation 217
5 Boltzmann Process 218
6 Gaussian Boltzmann Process 220
7 Application: Diffusion Coefficient 223
8 Perspectives 225
References 226
Finite Difference Patch Dynamics for Advection Homogenization Problems 229
1 Introduction 229
2 Model Problems 233
3 Patch Dynamics 234
4 Convergence Results 237
5 Numerical Results for Advection Problems 241
6 Conclusions 248
References 248
Coarse-Graining the Cyclic Lotka-Volterra Model: SSA and Local Maximum Likelihood Estimation 251
1 Introduction 251
2 The Lattice Lotka-Volterra Model 252
3 Equation Free Computation 253
4 Estimation Procedure 254
5 Illustrations of Equation-Free Computation 258
6 Discussion 263
References 268
Relations Between Information Theory, Robustness and Statistical Mechanics of Stochastic Uncertain Systems via Large Deviation Theory 272
1 Introduction 272
2 Thermodynamics and Statistical Mechanics 276
3 Robustness of Stochastic Uncertain Systems: General Setting 279
4 Robustness of Stochastic Uncertain Systems: an Energy Constraint Formulation 281
5 Robustness of Stochastic Uncertain Systems: a Relative Entropy Constraint Formulation 286
6 The Large Deviations Principle Applied to Diffusion Processes 291
7 Conclusion 293
References 293
Kinetics and Model Reduction 296
Exactly Reduced Chemical Master Equations 297
1 Introduction 297
2 Stochastic Population Modeling and the Chemical Master Equation 300
3 Methods and Results 307
4 Conclusions 314
References 315
Model Reduction in Kinetic Theory 318
1 Introduction 318
2 Basic Kinetic Theory 319
3 Chapman-Enskog Method 321
4 Grad Moment Method 323
5 Combining the Chapman-Enskog and Grad Methods 325
6 Order of Magnitude Method 327
7 Relations Between the Various Sets of Equations 330
8 Applications 331
9 Conclusions and Outlook 337
References 339
Novel Trajectory Based Concepts for Model and Complexity Reduction in ( Bio) Chemical Kinetics 343
1 Introduction 343
2 Model Reduction: Constrained Relaxation of Chemical Forces and Minimal Entropy Production Trajectories 345
3 Complexity Reduction of Biochemical Reaction Networks 352
References 362
Dynamics of the Plasma Sheath 365
1 Introduction 365
2 The Euler Equations with Planar, Radical, and Spherical symmetry 366
3 Collisional and Collisionless Plasmas 366
4 Dynamics of the Plasma Sheath 367
5 Generalization to Non-Symmetric Case 369
References 371
Mesoscale and Multiscale Modeling 372
Construction of Stochastic PDEs and Predictive Control of Surface Roughness in Thin Film Deposition 373
1 Introduction 373
2 Preliminaries 375
3 Model Construction 381
4 Predictive Control 388
5 Conclusions 397
References 398
Lattice Boltzmann Method and Kinetic Theory 401
1 Introduction 401
2 Minimal Kinetic Model 403
3 Grad’s Moment System and the Kinetic Model: Linear Case 404
4 Lattice Boltzmann Method 408
5 Flow in a Lid-Driven Micro-Cavity 409
6 Reduced Description of the Flow 412
7 Application: Outflow Condition in Lattice Boltzmann Simulations 413
8 Discussion 417
References 419
Numerical and Analytical Spatial Coupling of a Lattice Boltzmann Model and a Partial Differential Equation 421
1 Introduction 421
2 Models for One-Dimensional Diffusive Systems 423
3 Constrained Runs Scheme 427
4 Spatial Coupling 429
5 Numerical Results 432
6 Conclusions and Future Work 437
References 438
Modelling and Control Considerations for Particle Populations in Particulate Processes Within a Multi- Scale Framework 440
1 Introduction 440
2 Population Balance Models 443
3 Solution Techniques for Population Balance Models 445
4 Distribution Control Considerations 452
5 Summary and conclusions 457
References 459
Diagnostic Goal-Driven Reduction of Multiscale Process Models 462
1 Introduction 462
2 The Model Reduction Problem 464
3 Prediction-Based Diagnosis and Loss Prevention 468
4 Multiscale Process Models and Model Reduction 471
5 Case Study: Model Reduction of a Granule Bed for Diagnosis 473
6 Conclusions 481
References 483
Understanding Macroscopic Heat/ Mass Transfer Using Meso- and Macro- Scale Simulations 485
1 Introduction 485
2 Numerical Methodology 487
3 Conductive Transport – the Case of Composite Materials 490
4 Convective Transport – the Case of Laminar Flow 494
5 Convective Transport – the Case of Turbulent Transport 500
6 Summary and Conclusions 503
References 504
An Efficient Optimization Approach for Computationally Expensive Timesteppers Using Tabulation 510
1 Introduction 510
2 Problem Formulation 512
3 In Situ Adaptive Tabulation 513
4 Applications 517
5 Conclusion 525
References 527
A Reduced Input/Output Dynamic Optimisation Method for Macroscopic and Microscopic Systems 529
1 Introduction 529
2 Reduced Dynamic Optimisation for Input/Output Simulators 532
3 Multiple Shooting Approach for Dynamic Optimization 534
4 The Newton-Picard-Based Dynamic Optimisation Scheme 536
5 Numerical Examples 540
6 Conclusions 548
References 550
Erscheint lt. Verlag | 22.9.2006 |
---|---|
Zusatzinfo | XI, 560 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik | |
Schlagworte | algorithm • Coarse-graining • Complexity • Dynamical Systems • Dynamics • Dynamische Systeme • Evolution • Information Theory • Invariant manifold • Mechanics • Model • Modeling • Modelling • Model Reduction • Optimization • partial differential equation • Physics • Science • Simulation • Springer Complexity |
ISBN-10 | 3-540-35888-9 / 3540358889 |
ISBN-13 | 978-3-540-35888-6 / 9783540358886 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich