Environmental Bioremediation Technologies (eBook)
XX, 520 Seiten
Springer Berlin (Verlag)
978-3-540-34793-4 (ISBN)
Bioremediation is an eco-friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods.
Foreword 5
Preface 6
Contents 8
Contributors 16
1 Bioremediation of Organic and Metal Co-contaminated Environments: Effects of Metal Toxicity, Speciation, and Bioavailability on Biodegradation 20
1. Introduction 20
2. Metal Toxicity to Microorganisms 21
3. Metal Speciation and Bioavailability 23
4. Metal Inhibition of Biodegradation 38
5. Strategies to Enhance Biodegradation in Co-contaminated Environments 44
6. Conclusions and Future Directions 47
References 48
2 New Bioremediation Technologies to Remove Heavy Metals and Radionuclides using Fe( III)-, Sulfate- and Sulfur- Reducing Bacteria 54
1. Introduction 54
2. Microbial Reduction of Metals by Fe(III)-reducing Bacteria 55
3. Microbial Interaction with Toxic Metals by Sulfate-reducing Bacteria 59
4. Development of Biosensors 64
5. Development of Bioreactors 65
6. Conclusion 67
References 67
3 Bioremediation of Soils Polluted with Hexavalent Chromium using Bacteria: A Challenge 75
1. Introduction 75
2. Chromium Toxicity 77
3. Chemical Transformations of Chromium in Soil: Mobility and Bio- availability 79
4. Interaction Between Chromium and Bacteria 80
5. Soil Bioremediation Strategies 85
6. Conclusion 88
References 89
4 Accumulation and Detoxification of Metals by Plants and Microbes 95
1. Introduction 95
2. Phytoremediation 96
3. Microbial Remediation of Metal-polluted Soils 106
4. Heavy Metal Bioremediation using “Symbiotic Engineering” 109
5. Conclusion 112
References 112
5 Role of Phytochelatins in Phytoremediation of Heavy Metals 119
1. Introduction 119
2. Phytochelatin 121
3. Biosynthesis of Phytochelatins 131
4. Mechanism of Action of Phytochelatins 139
5. Characterization and Regulation of Phytochelatin Synthase Gene 142
6. Evolutionary Aspects of Phytochelatin Synthase 144
7. Genetic Engineering for Enhancing Phytoremediation Potential 148
8. Phytochelatin as a Biosensor 153
9. Conclusion 153
References 154
6 Metal Resistance in Plants with Particular Reference to Aluminium 165
1. Introduction 165
2. Phytotoxicity of Al and Agricultural Losses 170
3. Aluminum Tolerant Crop Plants 171
4. Conclusion 184
References 185
7 Bioremediation of Metals: Microbial Processes and Techniques 191
1. Introduction 191
2. Metals and Microbes 191
3. Microbial Processes Affecting Bioremediation of Metals 195
4. Bioremediation Options for Metal Contaminated Sites 197
5. Bioremediation of Chromium Contaminated Soils 199
6. Future Thrust – Do We Really Need to Do More? 202
7. Conclusion 203
References 203
8 Phytoremediation of Metals and Radionuclides 206
1. Introduction 206
2. Metals in Soils 207
3. Radionuclides 209
4. Phytoextraction 212
5. Rhizofiltration 214
6. Phytostabilization 215
7. Phytovolatilization 216
8. Design of Phytoremediation System 216
9. Challenges for Phytoremediation 218
10. Companies Developing Phytoremediation 220
11. Regulatory Acceptance and Public Acceptance 221
12. Conclusion 221
References 222
9 Nanotechnology for Bioremediation of Heavy Metals 227
1. Introduction 227
2. Nanotechnology - A New Scientific Frontier 227
3. Unique Properties of Nanoparticles 228
4. Synthesis of Nanophase Materials 228
5. Instrumentation for Nanotechnology 229
6. Application and Current Status of Nanotechnology 230
7. Metal Pollution and its Impact 230
8. Current Strategies for Metal Remediation 231
9. Bioremediation through Nanotechnology 231
10. Case Studies 233
11. Magnetotactic Bacteria 234
12. Comparison of Current Strategies with Nanotechnology 234
13. Future Prospects 235
14. Conclusion 235
Reference 236
10 Biotechnological Approaches to Improve Phytoremediation Efficiency for Environment Contaminants 238
1. Introduction 238
2. Phytoremediation: The Processes, Potentials and Limitations 241
3. Commercial Viability of Phytoremediation Projects 248
4. Rhizosphere Manipulations for Enhanced Bioavailability of the Toxic Substances 249
5. Molecular Mechanisms of Uptake, Detoxification, Transport and Accumulation of Toxic Substances by Plants and Genetic Engineering for Enhanced Phytoremediation 253
6. Conclusion 264
References 264
11 Aquatic Plants for Phytotechnology 274
1. Introduction 274
2. Phytotechnologies 274
3. Conclusion 288
References 288
12 Phytomonitoring of Air Pollutants for Environmental Quality Management 290
1. Introduction 290
2. Plants as Bioindicators of Air Pollutants 294
3. Phytoremediation and Urban Air Quality Management 298
4. Phytoremediation and Indoor Air Quality (IAQ) 300
5. Conclusion 302
References 303
13 Phytoremediation of Air Pollutants: A Review 308
1. Introduction 308
2. Phytotoxicity of Air Pollutants 310
3. Absorption and Assimilation of Pollutants 312
4. Phytofiltration of Particulate Matter 314
5. Plant Tolerance to Ambient Pollutants 316
6. Factors Controlling Plant Tolerance 317
7. A Case Study 319
8. Conclusion 324
References 324
14 Phytoremediation: Role of Plants in Contaminated Site Management 330
1. Introduction 330
2. Plant Species Involved in Phytoremediation 331
3. Phytoremediation: The Biophysical and Biochemical Mechanisms 332
4. The Vetiver Grass Technology (VGT) 335
5. Role of VGT in Environmental Management 338
6. Stabilization and Rehabilitation of Mining Overburdens 339
7. Rehabilitation of Waste Landfills: Leachate Retention and Purification 341
8. Removal of Nutrients and Heavy Metals and Prevention of Eutrophication in Streams and Lakes by VGT 342
9. Wastewater / Storm water Treatment by VGT in Constructed Wetlands 343
10. Conclusion 344
References 344
15 The Role of Macrophytes in Nutrient Removal using Constructed Wetlands 346
1. Introduction 346
2. Role of Macrophytes in Nutrient Removal 354
3. Conclusion 363
References 364
16 Nitrate Pollution and its Remediation 367
1. Introduction 367
2. Methods for Estimation of Nitrate Pollution 368
3. Sources of Nitrate Pollution 370
4. Landscape Physiology Affecting Nitrate Flux 375
5. Role of Nitrifying and Denitrifying Microbes in Nitrate Pollution 376
6. Nitrate Assimilation by Plants 378
7. Biological Toxicity Due to Nitrate Pollution 382
8. Problem Areas for Nitrate Pollution 383
9. Management Options for Nitrate 386
10. Conclusion 392
References 393
17 Bioremediation of Petroleum Sludge using Bacterial Consortium with Biosurfactant 404
1. Introduction 404
2. Methods 405
3. Results and Discussion 408
4. Conclusion 420
References 420
18 Diversity, Biodegradation and Bioremediation of Polycyclic Aromatic Hydrocarbons 422
1. Introduction 422
2. Natural Sources of PAHs in the Environment 423
3. Anthropogenic Sources of PAHs in the Environment 424
4. Biodegradation of PAHs 424
5. Bioremediation Studies 434
6. Diversity of PAHs Degrading Bacteria 437
7. Diversity of PAHs Metabolic Genes 439
8. Conclusion 444
References 445
19 Environmental Applications of Fungal and Plant Systems: Decolourisation of Textile Wastewater and Related Dyestuffs 457
1. Introduction 457
2. Environmental Fate of Textile Dyeing and Treatment Difficulties 458
3. Overview of Biological Treatments 460
4. Extracellular Oxidoreductases Useful in Pollution Abatement 461
5. Textile Dyes Decolourisation by Fungi and their Enzymes 467
6. New Tendencies in Textile Wastewater Treatments 467
7. Conclusion 469
References 470
20 Fungal-Based Remediation: Treatment of PCP Contaminated Soil in New Zealand 476
1. Introduction 476
2. Fungal-based Remediation 476
3. Conclusion 486
References 488
21 Biofilms in Porous Media: Mathematical Modeling and Numerical Simulation 491
1. Introduction 491
2. The Physical System 492
3. The Mathematical Model 494
4. Numerical Solution Techniques 498
5. Simulations 507
6. Conclusions 518
References 519
Index 522
Erscheint lt. Verlag | 5.2.2007 |
---|---|
Zusatzinfo | XX, 520 p. 58 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geologie |
Technik | |
Schlagworte | Air Pollution • Bacteria • biodegradation • Biofilm • bioremediation • Contaminants • effluents • Environment • Hydrocarbons • metals • microbes • Monitoring • nanotechnology • Pesticide • Pesticides • Phytoremediation • pollution • Soil |
ISBN-10 | 3-540-34793-3 / 3540347933 |
ISBN-13 | 978-3-540-34793-4 / 9783540347934 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich