Lipids in Photosynthesis (eBook)

Essential and Regulatory Functions

Hajime Wada, Norio Murata (Herausgeber)

eBook Download: PDF
2009 | 2009
XXIX, 473 Seiten
Springer Netherland (Verlag)
978-90-481-2863-1 (ISBN)

Lese- und Medienproben

Lipids in Photosynthesis -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Lipids in Photosynthesis: Essential and Regulatory Functions, provides an essential summary of an exciting decade of research on relationships between lipids and photosynthesis. The book brings together extensively cross-referenced and peer-reviewed chapters by prominent researchers. The topics covered include the structure, molecular organization and biosynthesis of fatty acids, glycerolipids and nonglycerolipids in plants, algae, lichens, mosses, and cyanobacteria, as well as in chloroplasts and mitochondria. Several chapters deal with the manipulation of the extent of unsaturation of fatty acids and the effects of such manipulation on photosynthesis and responses to various forms of stress. The final chapters focus on lipid trafficking, signaling and advanced analytical techniques. Ten years ago, Siegenthaler and Murata edited 'Lipids in Photosynthesis: Structure, Function and Genetics,' which became a classic in the field. 'Lipids in Photosynthesis: Essential and Regulatory Functions,' belongs, with its predecessor, in every plant and microbiological researcher's bookcase.


Lipids in Photosynthesis: Essential and Regulatory Functions, provides an essential summary of an exciting decade of research on relationships between lipids and photosynthesis. The book brings together extensively cross-referenced and peer-reviewed chapters by prominent researchers. The topics covered include the structure, molecular organization and biosynthesis of fatty acids, glycerolipids and nonglycerolipids in plants, algae, lichens, mosses, and cyanobacteria, as well as in chloroplasts and mitochondria. Several chapters deal with the manipulation of the extent of unsaturation of fatty acids and the effects of such manipulation on photosynthesis and responses to various forms of stress. The final chapters focus on lipid trafficking, signaling and advanced analytical techniques. Ten years ago, Siegenthaler and Murata edited "e;Lipids in Photosynthesis: Structure, Function and Genetics,"e; which became a classic in the field. "e;Lipids in Photosynthesis: Essential and Regulatory Functions,"e; belongs, with its predecessor, in every plant and microbiological researcher's bookcase.

From the Series Editor 7
Contents 13
Preface 19
Contributors 21
The Editors 24
Author Index 26
Color Plates 27
1 Lipids in Thylakoid Membranes and Photosynthetic Cells 43
Summary 43
I Introduction 44
II Genome Sequenes Reveal Genes Involved in Lipid Synthesis 44
A Cyanobacterial Genomes 44
B Lower-Plant Genomes 45
C Higher-Plant Genomes 45
III Mutagenesis and Transgenic Techniques 46
A Targeted Mutagenesis in Cyanobacteria 46
B T-DNA Insertional Mutagenesis 46
C Repression of Gene Expression by Antisense RNA and RNA Interference 47
IV Crystallographic Analysis of Soluble and Membrane-Bound Proteins 47
A Soluble Proteins 47
B Membrane-Bound Proteins 47
V Electron Microscopy 48
VI Improvements in Analytical Techniques 48
VII Physical Methods for Assessing the Fluidity of Membrane Lipids 48
VIII DNA Microarrays 48
IX Perspective 49
Acknowledgements 49
References 49
2 Fatty Acid Biosynthesis in Plants - Metabolic Pathways, Structure and Organization 52
Summary 53
I Introduction 53
II Biosynthesis of Fatty Acids 53
A Acetyl-CoA Carboxylase 54
B Fatty Acid Synthase 54
III Export of Fatty Acids from the Plastid 56
IV Biosynthesis of Polyunsaturated Fatty Acids, Unusual Fatty Acids and Chain Elongation 57
V Acylation Reactions and the Biosynthesis of Triacylglycerol 58
VI Structural Models for Fatty Acid Biosynthetic Pathway Components 61
A Individual Enzymes and Their Structure 62
1 Acyl-Carrier Protein 62
2 Holo-ACP Synthase 62
3 Acetyl-CoA Carboxylase 63
4 Malonyl CoA: ACP Transacylase 63
5 FAS Elongation Cycle Enzymes: 3-Ketoacyl- ACP Synthases, 3-Ketoacyl-ACP Reductase, 3-Hydroxyacyl-ACP Dehydratase and Enoyl-ACP Reductase 63
6 Acyl-ACP Thioesterase 64
7 Acyltransferase 65
8 Desaturase 66
B Interaction of Individual Proteins 66
1 Acetyl-CoA Carboxylase 66
2 Fatty Acid Synthase Components 66
C Pathways of Fatty Acid Metabolism 68
VII Integration of Fatty Acid Biosynthesis with Other Metabolic Machinery 68
VIII Conclusions 69
Acknowledgements 69
References 69
3 Biosynthesis and Function of Chloroplast Lipids 76
Summary 76
I Introduction 77
II Structures of Chloroplast Lipids 77
III Biosynthesis of Chloroplast Lipids 79
A Monogalactosyldiacylglycerol 79
B Digalactosyldiacylglycerol 80
C Sulfoquinovosyldiacylglycerol 81
D Phosphatidylglycerol 81
E Diacylglycerol Supply Systems 82
IV Regulation of Lipid Biosynthesis 85
A Regulation of Monogalactosyldiacylglycerol Synthesis in Photosynthetic Organs 85
B Regulation of Monogalactosyldiacylglycerol Synthesis in Non-Photosynthetic Organs 87
C Regulation of Lipid Synthesis under Phosphate-Limited Conditions 88
V Concluding Remarks 90
Acknowledgements 91
References 91
4 Lipids in Plant Mitochondria 97
Summary 97
I Introduction 98
II Lipid Composition of Mitochondrial Membranes 99
III Lipid Biosynthetic Pathways within Mitochondria 100
A Synthesis of Prenyl Diphosphate and Ubiquinones 100
B Synthesis of Fatty Acids and Lipoic Acid 102
C Synthesis of Glycerolipids 104
1 De novo Biosynthesis of Cardiolipin 104
2 Remodeling of Cardiolipin 107
3 Biological Functions of Phosphatidylglycerol and Cardiolipin 107
IV Concluding Remarks 110
Acknowledgements 110
References 110
5 Plant Sphingolipids: Structure, Synthesis and Function 117
Summary 118
I Introduction 118
II Sphingolipid Structure 119
III Synthesis of Sphingolipids 122
A Ceramide Synthesis 122
1 Serine Palmitoyltransferase 122
2 3-Ketosphinganine Reductase 123
3 Very Long-Chain Fatty Acid Synthesis 126
4 Ceramide Synthases 126
B Synthesis of Complex Sphingolipids 128
1 Glucosylceramide Synthesis 128
2 Inositolphosphoceramide Synthesis 128
C Subcellular Location of Sphingolipid Synthesis 128
D Long-Chain Base Modification Reactions 130
1 Long-Chain Base C-4 Hydroxylation 130
2 Long-Chain Base Cap Delta8 Desaturation 131
3 Long-Chain Base Cap Delta4 Desaturation 132
E Fatty Acid Alpha-Hydroxylation 133
F Long-Chain Base-1-Phosphates: Synthesis and Turnover 133
1 Long-Chain Base Phosphorylation 134
2 Long-Chain Base-1-Phosphate Catabolism 135
G Ceramide Phosphorylation 136
IV Sphingolipid Turnover 136
A Ceramide Turnover 136
B Complex Sphingolipid Turnover 137
V Sphingolipid Function 137
A Sphingolipids as Membrane Structural Components 137
1 Distribution and Functions of Sphingolipids in Membranes 137
2 Physicochemical Behavior of Sphingolipids in Aqueous Solutions and Microdomain Formation 138
3 Sphingolipid-Rich Microdomains in Plant Membranes 140
B Sphingolipids as Signaling Molecules 142
1 Role of Sphingolipids in Drought Stress Signaling and Regulation of Stomatal Closure 142
2 Sphingolipid-Associated Programmed Cell Death and Autophagy 143
3 Sphingolipids in Plant–Pathogen Interactions 144
C Relevance of Sphingolipids to Chloroplasts and Photosynthesis 146
VI Concluding Remarks 147
Acknowledgements 147
References 147
6 Lipids in Algae, Lichens and Mosses 156
Summary 156
I Introduction 157
II Lipids in Algae 157
A Structures 158
1 Lipid Classes 158
Chlorophyta 158
Other Algal Groups 159
2 Fatty Acids 159
Chlorophyta 159
Other Algal Groups 160
3 Unusual Lipids 160
4 Oxylipins 160
B Effects of Abiotic Stress on the Lipid Composition 162
C Functions 163
1 Lipids as Structural Components of the Photosystems 163
2 Role of Lipids in Xanthophyll Cycling 164
III Lipids in Lichens 165
A Biochemistry 166
1 Halogenated Lipids 166
2 Betaine Lipids 167
3 New Galactolipids 167
4 n-Alkanes 167
B Functions 167
1 Lipids under Dehydration 167
2 Air Pollution and Lipid Composition 168
3 Other Functions 168
IV Lipids in Mosses 168
A New Polyunsaturated Fatty Acids from Bryophytes 169
B New Enzymes for Bryophyte Lipid Metabolisms 169
C Lipid Metabolism under Stress 169
V Conclusions 170
Acknowledgements 171
References 171
7 Molecular Genetics of Lipid Metabolism in the Model Green Alga Chlamydomonas reinhardtii 177
Summary 177
I Introduction 178
II General Differences in Lipid Metabolism between Chlamydomonas and Seed Plants 178
III Membrane Glycerolipid Biosynthesis 180
A Fatty Acid Synthesis and Incorporation into Glycerolipids 180
B Chloroplast Membrane Lipids 181
C Extrachloroplastic Membrane Lipid Metabolism 184
IV Fatty Acid Desaturation 185
V Neutral Lipid Metabolism 186
VI Perspectives 187
Acknowledgements 188
References 188
8 Lipid Biosynthesis and its Regulation in Cyanobacteria 194
Summary 194
I Introduction 195
II Characteristics of Cyanobacterial Lipids 196
A Lipid Classes 196
B Fatty Acids and their Distribution at the sn-Positions of the Glycerol Backbone 198
III Biosynthesis of Lipids 198
A Saturated Fatty Acids 198
B Lipid Classes 200
1 Phosphatidic Acid 200
2 Galactolipids 201
3 Sulfoquinovosyldiacylglycerol 202
4 Phosphatidylglycerol 203
C Desaturation of Fatty Acids 204
1 The Fatty Acid Desaturation Reaction 204
2 Protein Components for Fatty Acid Desaturation 206
IV Regulation of Lipid Biosynthesis 207
A Increases in the Extent of Unsaturation of Membrane Lipids in Response to Low Temperature 207
B Variability in Levels of Phosphatidyl glyceroland Sulfoquinovosyldiacylglycerol under Phosphorus-Limiting Conditions 208
C Compensation for a Genetic Defect in Lipid Biosynthesis 209
Acknowledgements 210
References 210
9 Heterocyst Envelope Glycolipids 215
Summary 215
I Introduction 216
II Chemical Structure of the Heterocyst Envelope Glycolipids 216
III Physiological Role of the Heterocyst Envelope Glycolipids 217
IV Deposition of the Heterocyst Envelope Glycolipids 219
V Biosynthetic hgl Genes Predicted Heterocyst Envelope Glycolipid Biosynthetic Pathway
VI Regulation of Heterocyst Envelope Glycolipid Biosynthesis 222
VII The Organization of hgl Genes Resembles that of Polyunsaturated Fatty Acid-Biosynthetic Genes and Has Been Found in Only One Cyanobacterium that Does Not Form Heterocysts 224
VIII Are Heterocyst Envelope Glycolipid Biosynthetic Domains Distinguishable from those of Other Polyketide Synthases? 226
IX Perspectives 230
Acknowledgements 234
References 234
10 Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex 239
Summary 240
I Introduction 240
A Lipids in Protein Structures 240
B Properties and Composition of the Thylakoid Membrane 242
C Oxygenic Photosynthesis 242
II Lipids Localized in the Structural Models 244
A General Considerations 244
B Photosystem II 250
1 General Structure 250
2 Lipid Positions within Photosystem II 251
C Cytochrome b6f Complex 254
1 General Structure 254
2 Lipid Positions in the Cytochrome b6f Complex 254
D Photosystem I 256
1 General Structure 256
2 Lipid Positions within Photosystem I 256
E Light Harvesting Complex II 258
F Comparison with Other Membrane Protein Complexes 260
1 Bacterial Reaction Center 260
2 ATP Synthetase 261
III Functions of Lipids 261
A Mediating Protein–Protein Interactions and Oligomerization 261
1 Photosystem II 261
2 Cytochrome b6f Complex 263
3 Photosystem I 264
4 Light Harvesting Complex II 264
B Mediating Protein–Cofactor Interactions 264
1 Chlorophylls 264
2 Carotenoids 266
3 Quinones and Phylloquinones 267
4 Influencing the Water Splitting Reaction in Photosystem II 268
C Providing Lipophilic Regions within the Protein Complex 268
1 Quinone Exchange in Photosystem II 268
2 Quinone Exchange in Cytochrome b6f 270
3 Quinone Exchange in the PBRC-LH1 Complex and in the Cytochrome bc1 Complex 270
4 Possible Oxygen Diffusion in Photosystem II 271
IV Conclusions and Perspectives 273
Acknowledgements 273
References 273
11 The Role of Phosphatidylglycerol in Photosynthesis 279
Summary 279
I Introduction 280
II Biosynthesis of Phosphatidylglycerol 281
A Cyanobacteria 281
B Higher Plants 282
III Phosphatidylglycerol in Photosyn-thetic Membranes 283
IV The Role of Phosphatidylglycerol in Photosynthesis 286
A Cyanobacteria 286
B Higher Plants 288
V The Role of Phosphatidylglycerol in Non-Photosynthetic Processes 292
Acknowledgements 294
References 294
12 The Role of Glycolipids in Photosynthesis 300
Summary 300
I Introduction 301
II Glycoglycerolipids in Photosynthetic Membranes 301
III Enzymes Involved in Glycoglycerolipid Biosynthesis 302
IV The Role of MGDG, and SQDG in Oxygenic Photosynthesis 305
A Glycoglycerolipids in Photosynthetic Complexes 306
B Galactolipid Mutants 308
C Sulfolipid Mutants 310
V The Role of Glycoglycerlipids in Anoxygenic Photosynthesis 312
VI Conclusions 313
References 313
13 Role of Lipids in the Dynamics of Thylakoid Membranes 318
Summary 318
I Introduction 319
II Methods for Measuring Thylakoid Membrane Dynamics 319
III Lipid and Protein Mobility in Thylakoid Membranes 322
IV Effects of Lipid Composition on Membrane Fluidity and Tolerance of Low Temperatures 326
V Importance of Lipids for Creating Diffusion Space for Proteins and Plastoquinone 327
Acknowledgements 328
References 328
14 Architecture of Thylakoid Membrane Networks 330
Summary 330
I Introduction 331
II Techniques in Electron Microscopy of Plant Samples 332
III Thylakoid Network Organization in Cyanobacteria and Algae 335
A Cyanobacterial Thylakoid Networks 335
B Algal Thylakoid Networks 339
IV Thylakoid Networks of Higher Plants 342
A Ultrastructure and Three-Dimensional Organization 342
B Network Remodeling during Light Acclimation 348
C Why Do Higher-Plant and Some Green Algal Thylakoid Networks Have Grana? 353
V Concluding Remarks 354
Acknowledgements 355
References 355
15 Regulatory Role of Membrane Fluidity in Gene Expression 364
Summary 364
I Introduction 365
II Modulation of Membrane Fluidity 365
A Measurements of Membrane Fluidity 365
B Effects of Changes in Temperature 366
C Effects of Osmotic Stress 366
D Effects of the Unsaturation of Fatty Acids 367
E Feedback Regulation of Fluidity by Desaturation of Fatty Acids 367
III Perception of Membrane Rigidification 369
A Cold-Inducible Genes in Cyanobacteria 369
B A Sensor of Cold Stress in Cyanobacteria 369
C Cold-Inducible Gene Expression in Plants 371
D Cold Sensing in Plants 371
E Sensing Hyperosmotic Stress 372
IV Perception of Membrane Fluidization 374
A Heat-Induced Gene Expression 374
B Gene Expression Induced by Membrane Fluidization 374
C Sensors of Hypoosmotic Stress 375
V Multifunctional Sensors 376
VI Conclusions and Perspectives 377
Acknowledgements 378
References 378
16 Lipid Trafficking in Plant Photosynthetic Cells 384
Summary 384
I Introduction 385
II Lipid Trafficking Involved in Formation of Chloroplast Lipids 386
A Galactolipid Synthesis in the Chloroplast Envelope 386
B Transfer of Diacylglycerol Backbone from Phosphatidylcholine to Galactolipids 387
C Trafficking of Phosphatidic Acid in the Chloroplast Envelope 388
D Lipid Transfer to the Thylakoids 389
III Lipid Trafficking Induced by Phosphate Deprivation 390
A Phosphate Deprivation-Induced Modification of Plant Cell Membranes 390
B Digalactosyldiacylglycerol Transfer from Chloroplasts to Mitochondria 390
C Relationship between Phospholipid Breakdown and Digalactosyldiacylglycerol Synthesis under Phosphate Deprivation 391
IV Molecular Mechanisms Involved in Lipid Trafficking 392
A Motion of Glycerolipids 392
B Flip-Flop Movements 393
C Vesicular Lipid Transfer 398
D Transfer of Lipids through Membrane Contact Sites 400
1 General Features 400
2 The Transfer of Phosphatidylserine at Membrane Contact Sites 401
3 The Inter-Membrane Transfer of Cardiolipin through Oligomeric Kinase Bridges 401
4 CERT, a Module Protein Involved in Inter-Membrane Lipid Transfer 401
V Conclusions 402
Acknowledgements 402
References 402
17 Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids 408
Summary 408
I Introduction 409
II Engineered Decreases in Unsaturation of Fatty Acids in Membrane Lipids in Synechocystis 410
A Targeted Mutagenesis of Fatty Acid Desaturases 410
B Decreased Unsaturation of Fatty Acids Stimulates Photoinhibition at Low Temperature 411
C Decreased Unsaturation of Fatty Acids Stimulates Irreversible Photoinhibition 412
D Decreased Unsaturation of Fatty Acids Enhances Sensitivity to Salt Stress 412
III Engineered Increases in Unsaturation of Fatty Acids in Membrane Lipids in Synechococcus 414
A Transgenes for Fatty Acid Desaturases 414
B Increased Unsaturation of Fatty Acids Mitigates Photoinhibition at Low Temperature 414
C Increased Unsaturation of Fatty Acids Enhances Tolerance to Salt Stress 415
IV Modulation of Unsaturation of Fatty Acids in Membrane Lipids in Higher Plants 415
A Mutation of Fatty Acid Desaturases and Changes in Lipid Composition 415
B Changes in Unsaturation of Fatty Acids by Transgenes for Acyltransferases 417
C Increases in Unsaturation of Fatty Acids due to Transgenes for Fatty Acid Desaturases 418
V Conclusions 419
Acknowledgements 420
References 420
18 Oxidation of Membrane Lipids and Functions of Oxylipins 424
Summary 424
I Introduction 425
II Chemical and Enzymatic Pathways of Oxylipin Synthesis 425
A Polyunsaturated Fatty Acids Are Sensitive to Oxidation 425
B Production and Role of Reactive Electrophile Species 426
C Enzymatic Pathways of Oxylipin Synthesis 427
D An Evolutionary Perspective 428
III The Synthesis and Function of Jasmonate in Higher Plants 428
A An Overview of Defense and Other Functions in Plants 428
B The Biochemistry and Cell Biology of Jasmonate Synthesis 429
1 Chloroplast and Peroxisome Enzymes of Jasmonate Synthesis 429
2 Plants Synthesize Numerous Jasmonate Derivatives 429
C Jasmonate Is the Defense Hormone 431
1 An Essential Role for Jasmonate in Insect Defense 431
2 Jasmonate Is a Translocated Signal 432
3 Jasmonate Also Acts in Defense against Microbial Pathogens 433
D Discovery of the JAZ Repressors and the Mechanism of Jasmonate Signaling 433
1 Eight JAZ Genes Induced by Jasmonate Treatment 433
2 A Modified JAZ Protein Blocks Jasmonate Signaling 434
3 Jasmonoyl-Isoleucine Promotes JAZ-COI1 Interaction 435
4 Alternative Models of Jasmonate Signaling 435
IV Conclusions and Perspectives 436
Acknowledgements 436
References 436
19 Biosynthesis and Biotechnology of Seed Lipids Including Sterols, Carotenoids and Tocochromanols 441
Summary 441
I Introduction 442
A Seed Lipids and their Biosynthetic Origin 442
B Lipid Function 442
C Objectives and Outline 442
II Sterols 443
III Carotenoids 446
IV Tocochromanols 452
V Acyl Lipids 456
A Carbon Supply for Fatty Acid Biosynthesis in Seeds 456
1 Precursors of Fatty Acid Biosynthesis in Photosynthetic Leaf Tissues 457
2 Gene Expression and Activity of Enzymes Involved in Carbon Supply for Fatty Acid Biosynthesis in Developing Seed 458
3 Sources of Carbon Energy and Reductant for Fatty Acid Biosynthesis in the Developing Seed 459
B Fatty Acid and Glycerol Lipid Biosynthesis in Seeds 462
C Developmental Programs of Seed Maturation and their Relationship to Lipid Biosynthesis 466
D Approaches to Increased Oil Accumulation in Seed 468
References 470
20 Advanced Mass Spectrometry Methods for Analysis of Lipids from Photosynthetic Organisms 479
Summary 479
I Introduction 480
II Lipid Extraction 481
III Chromatographic Methods for Lipid-Class Separation 481
A Thin-Layer Chromatography 482
B Solid-Phase Extraction 483
C High-Performance Liquid Chromatography 483
D Detection Methods for Lipids in High-Performance Liquid-Chromatographic Systems 483
IV Mass Spectrometry-Based Lipid Analysis 485
A Direct Infusion-Based Lipid Profiling 485
B Hyphenated Technologies for Lipid Analysis 488
1 High-Performance Liquid Chromatography/ Electrospray Ionization Mass Spectrometry 488
2 High-Performance Liquid Chromatography/ Atmospheric Pressure Chemical Ionization and High-Performance Liquid Chromatography/ Atmospheric Pressure Photoionization 490
3 Gas Chromatography–Mass Spectrometry 491
V Qualification and Quantification 491
VI Outlook 492
References 493
Index 496

Erscheint lt. Verlag 7.11.2009
Reihe/Serie Advances in Photosynthesis and Respiration
Advances in Photosynthesis and Respiration
Zusatzinfo XXIX, 473 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Botanik
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Naturwissenschaften Biologie Zellbiologie
Technik
Schlagworte Biotechnology • Cells • Chloroplast • Expression • gene expression • Glycerolipid • Lipid • photosynthesis • Photosynthetic Organism • photosystem • Regulation • Thylakoid Membrane
ISBN-10 90-481-2863-3 / 9048128633
ISBN-13 978-90-481-2863-1 / 9789048128631
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 31,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99