From a Geometrical Point of View (eBook)
X, 310 Seiten
Springer Netherland (Verlag)
978-1-4020-9384-5 (ISBN)
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein's Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane's work in the early 1940's and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics.
From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.
Jean-Pierre Marquis teaches logic, epistemology and philosophy of science at the Université de Montréal. He has published papers on category theory, categorical logic, general philosophy of mathematics and philosophy of science.
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein's Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane's work in the early 1940's and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics.From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.
Jean-Pierre Marquis teaches logic, epistemology and philosophy of science at the Université de Montréal. He has published papers on category theory, categorical logic, general philosophy of mathematics and philosophy of science.
Acknowledgements 7
Contents 8
Introduction 10
Category Theory and Klein’s Erlangen Program 18
1.1 Eilenberg and Mac Lane’s Claim 18
1.2 Klein’s Program: Basic Aspects 21
1.3 Logical Remarks 41
1.4 Main Ontological and Epistemological Consequences of Klein’s Program 43
1.5 Groups and Geometries: Formal Supervenience and Reduction 45
1.6 Summing Up 48
Introducing Categories, Functors and Natural Transformations 50
2.1 From a Transformation Group to the Algebra of Mappings 53
2.2 Foundations of Category Theory 60
2.3 Philosophical Interlude: An Argument Against the Foundational Status of Category Theory 63
2.4 At Last, Natural Transformations 69
2.5 Extending Klein’s Program in the Wrong Direction 73
2.6 Category Theory: The First Phase 1945–1958 76
Categories as Spaces, Functors as Transformations 82
3.1 Universal Morphisms 83
3.2 Grothendieck and Abelian Categories 99
Discovering Fundamental Categorical Transformations: Adjoint Functors 118
4.1 The Background: Homotopy Theory and Category Theory 123
4.2 Kan’s Discovery 134
4.3 Kan’s 1958 Papers “Adjoint Functors” 141
Adjoint Functors: What They are, What They Mean 155
5.1 Adjointness 156
5.2 Equivalence of Categories Again 169
5.3 Back to Klein 172
5.4 From Groups to Groupoids 174
5.5 The Foundations of Category Theory. . . Again 183
Invariants in Foundations: Algebraic Logic 199
6.1 Lawvere’s Thesis 202
6.2 The Category of Categories as a Foundational Framework 205
6.3 The Elementary Theory of the Category of Sets 216
6.4 Categorical Logic: the Program 218
6.5 An Adjoint Presentation of Propositional Logic 224
6.6 Quantifiers as Adjoint Functors 228
6.7 Graphical Syntax: Sketches 233
6.8 Categorical Theories: Conceptual and Generic Structures 242
6.9 Summing Up 254
Invariants in Foundations: Geometric Logic 255
7.1 Grothendieck Toposes: Generalized Spaces 256
7.2 Elementary Toposes 269
7.3 Invariants Under Geometric Transformations 275
7.4 Invariants Under Logical Transformations 279
7.5 Invariant Foundational Frameworks 284
7.6 Using Geometric and Logical Invariants 290
7.7 Summing Up 291
Conclusion 293
References 299
Index 310
Erscheint lt. Verlag | 20.11.2008 |
---|---|
Reihe/Serie | Logic, Epistemology, and the Unity of Science | Logic, Epistemology, and the Unity of Science |
Zusatzinfo | X, 310 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Geschichte |
Geisteswissenschaften ► Philosophie ► Allgemeines / Lexika | |
Geisteswissenschaften ► Philosophie ► Logik | |
Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Geschichte der Mathematik | |
Naturwissenschaften | |
Technik | |
Schlagworte | Algebra • categorical logic • category theory • Geometry • History of Mathematics • Invariant • Mathematics • mathematics and foundations • philosophy of mathematics • Science |
ISBN-10 | 1-4020-9384-5 / 1402093845 |
ISBN-13 | 978-1-4020-9384-5 / 9781402093845 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich