Electrochemistry at the Nanoscale (eBook)

eBook Download: PDF
2009 | 2009
X, 471 Seiten
Springer New York (Verlag)
978-0-387-73582-5 (ISBN)

Lese- und Medienproben

Electrochemistry at the Nanoscale -
Systemvoraussetzungen
192,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

For centuries, electrochemistry has played a key role in technologically important areas such as electroplating or corrosion. In recent decades, electrochemical methods are receiving increasing attention in important strongly growing fields of science and technology such as nanosciences (nanoelectrochemistry) and life-sciences (organic and biological electrochemistry).

Characterization, modification and understanding of various electrochemical interfaces or electrochemical processes at the nanoscale, has led to a huge increase of the scientific interest in electrochemical mechanisms as well as of application of electrochemical methods in novel technologies. This book presents exciting emerging scientific and technological aspects of the introduction of the nanodimension in electrochemical approaches are presented in 12 chapters/subchapters.


For centuries, electrochemistry has played a key role in technologically important areas such as electroplating or corrosion. In recent decades, electrochemical methods are receiving increasing attention in important strongly growing fields of science and technology such as nanosciences (nanoelectrochemistry) and life-sciences (organic and biological electrochemistry). Characterization, modification and understanding of various electrochemical interfaces or electrochemical processes at the nanoscale, has led to a huge increase of the scientific interest in electrochemical mechanisms as well as of application of electrochemical methods in novel technologies. This book presents exciting emerging scientific and technological aspects of the introduction of the nanodimension in electrochemical approaches are presented in 12 chapters/subchapters.

Nanostructure Science and Technology 2
Preface 5
Contents 7
Contributors 9
Theories and Simulations for Electrochemical Nanostructures 11
1.1 Introduction 11
1.2 Simulations of Electrochemical Nanostructures 12
2.1 Computer Simulation Techniques for Nanostructures 13
2.2 Interaction Potentials 16
2.3 The Creation of Atomic Clusters with the Aid of an STM Tip 17
2.4 The Filling of Nanoholes 24
1.3 Electron Transfer Through Functionalized Adsorbates and Films 27
3.1 Electron Exchange with a Monolayer 27
3.2 Metal--Adsorbate-Metal Systems 28
3.2.1 Two-Step Mechanism 29
3.2.2 Resonant Transition 30
3.2.3 Adiabatic Limit 34
3.3 Two Intermediate States 36
3.3.1 Electron Exchange via Two Bridge States 37
3.3.2 Electron Exchange via Two Equal Reactants 37
1.4 Conclusion 40
SPM Techniques 42
2.5 Introduction 42
2.6 Electrochemical STM 44
2.1 Principle of Operation and Experimental Considerations 45
2.2 High-Resolution In Situ Studies of Electrode Surface Structure 47
2.3 Studies of Phase Transitions and Transport on Electrode Surfaces 54
2.4 Studies of Electrochemical Phase Formation Processes 60
2.5 Scanning Tunneling Spectroscopy 66
2.7 Electrochemical AFM 69
3.1 Experimental Realization and Operation Modes 70
3.2 In Situ AFM Imaging of Electrode Surfaces 72
3.3 Forces at Electrochemical Interfaces 75
2.8 Other SPM Techniques 76
2.9 Nanostructuring by Electrochemical SPM 77
5.1 Nanostructuring by Local Mechanical Interactions 77
5.2 Nanostructuring by Modification of the Local Electrochemistry 79
5.3 Nanostructuring by Electrochemical Nanocells 80
2.10 Conclusions 82
X-ray Lithography Techniques, LIGA-Based Microsystem Manufacturing: The Electrochemistry of Through-Mold Deposition and Material Properties 88
3.11 Introduction to LIGA Fabrication and Its Applications 88
1.1 LIGA Process Flow 90
1.2 LIGA History 95
1.3 LIGA Applications 98
3.12 Electrodeposition into Deep High-Aspect-Ratio Features for LIGA 101
2.1 Introduction 102
2.2 Workpiece- and Pattern-Scale Effects 104
2.3 The Feature Scale 105
3.13 Summary: Uniformity at the Workpiece, Pattern, and Feature Scales in LIGA 113
3.14 Electrodeposition in LIGA: Materials and Other Aspects 114
3.15 Properties and Structure of Electrodeposited Materials for LIGA-Based Microsystem Applications 116
5.1 Introduction 116
5.2 Measurement Techniques for Strength and Ductility 117
5.3 Grain Refinement for Improved Electrodeposit Strength 119
5.4 Particulate Additive Effects 133
5.5 Modulus of Electrodeposits 134
5.6 Summary: Electrodeposited Materials for LIGA-Based Microsystems 138
3.16 Other Aspects of LIGA Technology 139
Direct Writing Techniques: Electron Beam and Focused Ion Beam 148
4.17 Introduction 148
4.18 Theoretical Aspects 149
2.1 Generality 149
2.2 Interaction of Energetic Particles with Solids 149
2.3 Scattering of Particles 150
2.4 Stopping of Particles in Solids 154
2.5 Radiation Damage in Solids 158
2.6 Sputtering 160
4.19 Micro- and Nanostructuring by Electron-Beam Approaches and Electrochemical Reactions 161
3.1 Microstructuring by Conventional EBL and Electrochemical Reactions 161
3.1.1 Basics on Electron-Beam Lithography 161
3.1.2 Nanostructuring by EBL and Electroplating 164
3.1.3 Nanostructuring by EBL and Electrochemical Etching 165
3.2 Electrochemical Micropatterning Using E-beam Modification of SAMs 166
3.2.1 Self-Assembled Monolayers (SAMs) 166
3.2.2 Selective Electrodeposition Using E-beam-induced Modification of SAMs 168
3.3 Micro- and Nanostructuring by EBICD and Electrochemical Reactions 169
3.3.1 E-beam-Induced Deposition (EBID) Technique 169
3.3.2 EBICD Technique 170
3.3.3 Contamination Lithography 172
3.3.4 Micro- and Nanostructuring by EBICD Technique and Electrodeposition 172
3.3.5 Microstructuring by EBICD Technique and Electrochemical Etching 174
4.20 Material Processing by FIB 178
4.1 Generation of Focused Ion Beams 180
4.2 Ion Optics 181
4.3 Material Processing by Focused Ion Beams 182
4.4 Microstructuring by FIB and Electrochemical Reactions 182
Wet Chemical Approaches for Chemical Functionalization of Semiconductor Nanostructures 191
5.21 Introduction 191
5.22 Porous Silicon 192
2.1 Preparation of Porous Silicon 193
2.2 Reactive Surface Species on PSi Surfaces 194
2.2.1 Hydrogen Termination 194
2.2.2 Deuterium Termination 196
2.2.3 Halide Termination 196
2.3 Chemical Derivatization of PSi Surfaces Through Si--C 197
2.3.1 Metal-Induced Hydrosilylation 197
2.3.2 Photochemical Hydrosilylation 201
2.3.3 Thermal Hydrosilylation 205
2.3.4 Microwave-Irradiation-Induced Hydrosilylation 210
2.3.5 Hydrosilylation of Alkenes and Alkynes Initiated by Hydride Abstraction 212
2.3.6 Reaction with Grignard and Alkyl Lithium Reagents 213
2.3.7 Reaction with Alkyl Halides under Microwave Irradiation 215
2.3.8 Electrochemical Functionalization 217
2.4 Chemical Derivatization of PSi Surfaces Through Si--O--C 224
2.4.1 Electrochemical Methoxylation 224
2.4.2 Photoderivatization with Carboxylic Acids 225
2.4.3 Thermal Reaction of H-Terminated PSi with Alcohols 227
2.4.4 Thermal Reaction of Halogenated PSi with Alcohols 229
2.4.5 Thermal Hydrosilylation of Aldehydes 229
2.4.6 Reaction with Benzoquinone 231
2.5 Miscellaneous 232
2.5.1 Formation of Organic Layers through Si--Si Bonds 232
2.5.2 Plasma Modification 232
2.6 Preparation of Polymer/PSi Hybrids 233
2.7 Covalent Immobilization of Biomolecules 234
2.8 Applications 235
2.8.1 Surface Passivation 235
2.8.2 Electroluminescence Stabilization 236
2.8.3 Desorption/Ionization on Silicon (DIOS) 238
2.8.4 Sensing 238
5.23 Porous-Based Germanium Materials 241
3.1 Formation 241
3.1.1 Porous Germanium 241
3.1.2 Macroporous Germanium 246
3.1.3 PSi--Germanium 248
3.1.4 Chemical Functionalization of Hydride-Terminated Porous Germanium 248
5.24 Conclusions and Perspectives 249
The Electrochemistry of Porous Semiconductors 257
6.25 Introduction 257
6.26 Charging of Porous Electrodes 258
2.1 Accumulation 258
2.2 Depletion 261
6.27 Electrochemical Reactions 263
3.1 Minority-Carrier Reactions 265
3.1.1 Electron Tunneling 265
3.1.2 Photogeneration 268
3.1.3 Minority-Carrier Injection 276
3.2 Majority-Carrier Reactions 277
3.2.1 p-Type Semiconductors 277
3.2.2 n-Type Semiconductors 278
3.3 Combined Majority/Minority-Carrier Processes 279
3.3.1 Hole Injection 279
3.3.2 Electron Injection 280
6.28 Conclusion 283
Deposition into Templates 287
7.29 Introduction 287
7.30 Templates Used 288
2.1 Track-Etch Membranes 288
2.2 Alumina Membranes 290
2.3 Colloidal Crystals 293
7.31 Template-Synthesis Strategies 295
3.1 Electrochemical Deposition 295
3.1.1 Electrodeposition of Metals 295
3.1.2 Electrodeposition of Polymers 297
3.2 Electroless Deposition 297
3.3 Sol--gel Deposition 301
3.4 Chemical Vapor Deposition 302
3.5 Atomic Layer Deposition 303
7.32 Applications in Nanoelectrochemistry 304
4.1 Gold Nanoelectrodes 306
4.1.1 Fabrication 306
4.1.2 Current Response of the NEE 306
4.1.3 Detection Limits 307
4.1.4 Supporting Electrolyte Effect 309
4.2 Carbon Nanoelectrodes 309
4.2.1 Fabrication 311
4.2.2 Measuring EOF in CNM 311
4.2.3 Redox Control of EOF 314
4.3 Li-ion Battery Nanoelectrodes 315
4.3.1 Fabrication 317
4.3.2 Measuring Rate Capabilities 318
4.3.3 Other Electrochemical Studies 319
4.3.4 Nanosphere-Templated Structures 320
4.4 Ion Channels 320
4.4.1 Electrochemical Measurements 321
4.5 DNA Ion Channels 322
7.33 Conclusion 324
Electroless Fabrication of Nanostructures 329
8.34 Fundamental (with Contributions from A. Sugiyama) 329
8.35 Superfilling of Cu into Patterned Substrates by Electroless Plating (with Contributions from J. Sasano) 331
2.1 Introduction 331
2.2 Superfilling by Electrodeposition 331
2.3 Superfilling by Electroless Deposition 332
2.4 Summary 336
8.36 A Novel Process for Fabrication of ULSI Interconnects (with Contributions from M. Yoshino) 337
3.1 Introduction 337
3.2 Thermal Stability of Electroless Ni-Alloy Diffusion Barrier Layer 338
3.3 Fabrication of Barrier Layer on SiO 2 Substrate Without Sputtered Seed Layer 340
3.4 All-Wet Fabrication of Cu Wiring 341
8.37 Magnetic Nanodot Arrays for Patterned Media (with Contributions from J. Kawaji) 342
4.1 Introduction 342
4.2 Fabrication of Magnetic Nanodot Arrays on Si Wafer 343
4.3 Magnetic Properties of CoNiP Nanodot Arrays 344
8.38 Nanoparticles 346
5.1 Oxide Nanoparticles (with Contributions from T. Nakanishi) 346
5.2 Metallic Mesoporous Particles (with Contributions from T. Momma) 349
Electrochemical Fabrication of Nanostructured, Compositionally Modulated Metal Multilayers (CMMMs) 356
9.39 Introduction 356
9.40 Experimental Apparatus and Schemes 357
2.1 Dual-Bath Electrodeposition 358
2.2 Single-Bath Electrodeposition 360
2.3 Electrodeposition by Flow Modulation 365
9.41 Issues Related to Electrodeposition of Nanostructured Metal Multilayers 366
3.1 Estimation of Layer Thickness and Composition 366
3.2 Effect of Displacement Reaction 368
3.3 Interfacial and Phase Instability 370
9.42 Optimization of Electrodeposition Processes 372
4.1 Electrolyte Stability and Electrochemical Cells 373
4.2 Control of Electrochemical Parameters 375
4.3 Control of Interface Structure and Properties 376
9.43 Other Compositionally Modulated Systems: Ceramics and Seminconductors 377
9.44 Summary 379
Corrosion at the Nanoscale 384
10.45 Introduction 384
10.46 Corrosion and Protection of Materials for the Nanoelectronics: The Case of Copper 385
2.1 Active Dissolution 385
2.2 Protection by Corrosion Inhibitors 388
2.3 Passivation 391
10.47 Nanostructure of Passive Films 396
10.48 Nanostructural Aspects of Passivity Breakdown and Localized Corrosion 401
4.1 Dissolution in the Passive State and Passivity Breakdown 401
4.2 Initiation of Pitting Corrosion 405
4.3 Tip-Induced Controlled Localized Corrosion 408
10.49 Conclusion 410
Nanobioelectrochemistry 414
11.50 Overview 414
11.51 Electrochemistry of Biomolecules at the Nanoscale 416
11.52 Electrochemistry of Self-Assembled Nanostructured Biomolecules 419
11.53 Electrochemistry and AFM of Nanoscale DNA Surface Layers on Conducting Surfaces 422
11.54 Nanoscale Electrochemical Biosensor Devices 430
5.1 Template-Synthesized Biomolecule Nanotubes 431
5.2 Nanoparticle Magnetic Control of Bioelectrocatalytic Processes 435
5.3 Detection Limits for Nanoscale Biosensors 437
11.55 Conclusions 437
Self-Organized Oxide Nanotube Layers on Titanium and Other Transition Metals 441
12.56 Introduction 441
12.57 Overview on the Electrochemistry of Valve Metals 443
12.58 Formation of Nanotubular Layers 445
3.1 I--U Curves 445
3.2 I-t Curves and Initiation of Porous Layers 447
3.2.1 Current Oscillations 448
3.3 Steady-State Growth 449
12.59 Factors Affecting Tube Morphology 449
4.1 pH of the Electrolyte 449
4.2 Effect of Anodization Voltage 451
4.3 Effect of Viscosity 452
4.4 Effect of Water Content 453
4.5 Formation of Multilayers and Free-Standing Membranes 454
4.6 Different Metal Substrates 454
12.60 Structure and Chemistry 457
5.1 Crystallographic Structure 457
5.2 Chemical Composition 459
12.61 Properties of the Tubes 459
6.1 Photoresponse of the Tubes 460
6.2 Doping, Dye Sensitization 461
6.3 Insertion Properties for Li and H + and Strong Electrochromic Effects 462
6.4 Photocatalysis 463
6.5 Highly Adjustable Wetting Properties 464
6.6 Biomedical Applications 464
6.7 Other Aspects 467
Index 473

Erscheint lt. Verlag 21.7.2009
Reihe/Serie Nanostructure Science and Technology
Nanostructure Science and Technology
Zusatzinfo X, 471 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Schlagworte Chemistry • Corrosion • Deposition • Electrochemistry • nanoscale • Nanoscience • nanostructure • nanotechnology • Nanotube • Preparation • Schmuki • semiconductor • superlattices
ISBN-10 0-387-73582-8 / 0387735828
ISBN-13 978-0-387-73582-5 / 9780387735825
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99