Thermodynamics of Solutions (eBook)

From Gases to Pharmaceutics to Proteins
eBook Download: PDF
2009 | 2009
VII, 346 Seiten
Springer New York (Verlag)
978-1-4419-0440-9 (ISBN)

Lese- und Medienproben

Thermodynamics of Solutions -  Eli Ruckenstein,  Ivan L. Shulgin
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book consists of a number of papers regarding the thermodynamics and structure of multicomponent systems that we have published during the last decade. Even though they involve different topics and different systems, they have something in common which can be considered as the 'signature' of the present book. First, these papers are concerned with 'difficult' or very nonideal systems, i. e. systems with very strong interactions (e. g. , hyd- gen bonding) between components or systems with large differences in the partial molar v- umes of the components (e. g. , the aqueous solutions of proteins), or systems that are far from 'normal' conditions (e. g. , critical or near-critical mixtures). Second, the conventional th- modynamic methods are not sufficient for the accurate treatment of these mixtures. Last but not least, these systems are of interest for the pharmaceutical, biomedical, and related ind- tries. In order to meet the thermodynamic challenges involved in these complex mixtures, we employed a variety of traditional methods but also new methods, such as the fluctuation t- ory of Kirkwood and Buff and ab initio quantum mechanical techniques. The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the - proximations usually used in the thermodynamic treatment of multicomponent systems. This theory appears to be very fruitful when applied to the above mentioned 'difficult' systems.

Eli Ruckenstein  has won many notable awards, including the Foundes Award from the American Institue of Chemical Engineers, the National Academy of Engineering Founders Award, and the National Medal of Science.

His interests include transport phenomena, catalysis, colloids and interfces, phase transformations, thermodynamics, and materials.


This book consists of a number of papers regarding the thermodynamics and structure of multicomponent systems that we have published during the last decade. Even though they involve different topics and different systems, they have something in common which can be considered as the "e;signature"e; of the present book. First, these papers are concerned with "e;difficult"e; or very nonideal systems, i. e. systems with very strong interactions (e. g. , hyd- gen bonding) between components or systems with large differences in the partial molar v- umes of the components (e. g. , the aqueous solutions of proteins), or systems that are far from "e;normal"e; conditions (e. g. , critical or near-critical mixtures). Second, the conventional th- modynamic methods are not sufficient for the accurate treatment of these mixtures. Last but not least, these systems are of interest for the pharmaceutical, biomedical, and related ind- tries. In order to meet the thermodynamic challenges involved in these complex mixtures, we employed a variety of traditional methods but also new methods, such as the fluctuation t- ory of Kirkwood and Buff and ab initio quantum mechanical techniques. The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the - proximations usually used in the thermodynamic treatment of multicomponent systems. This theory appears to be very fruitful when applied to the above mentioned "e;difficult"e; systems.

Eli Ruckenstein  has won many notable awards, including the Foundes Award from the American Institue of Chemical Engineers, the National Academy of Engineering Founders Award, and the National Medal of Science. His interests include transport phenomena, catalysis, colloids and interfces, phase transformations, thermodynamics, and materials.

Preface 5
Contents 7
Chapter 1 The Kirkwood–Buff integrals and their applications to binary and ternary solutions 8
Hydrophobic self-assembling in dilute aqueous solutions of alcohols and hydrocarbons 36
1. Introduction 36
2. Theory and formulas 37
3. Evaluations of the correlation volume in aqueous solutions of alcohols and hydrocarbons 38
4. Hydrophobic interactions and self-assemblingat in!nite dilution 39
5. Discussion 39
References 40
Effect of a third component on the interactions in a binary mixture determined from the fluctuation theory of solutions 42
1. Introduction 42
2. Theory and formulas 43
3. Excess number of molecules near a central one 44
4. Source of data and calculation procedure 46
5. Conclusion 54
The Kirkwood-Buff Theory of Solutions and the Local Composition of Liquid Mixtures 59
1. Introduction 59
2. A New Procedure to Calculate the Excess (Or Deficit) Number of Molecules around a Central Molecule 60
Excess around a central molecule with application to binary mixtures 66
1. Introduction 66
2. A simple criterion for preferential solvation in a binary system 68
4. Various binary mixtures 69
5. Discussion and conclusion 72
References 74
An Improved Local Composition Expression and Its Implication for Phase Equilibrium Models 77
1. Introduction 77
2. The Local Composition in an Ideal Mixture 77
3. A Modification of the NRTL Equation 78
4. Comments on Other Expressions for the Local Concentrations 78
5. A Vapor-Liquid Equilibrium Correlation with Equations 10 and 11 79
6. Conclusion 80
Literature Cited 80
Chapter 2 Supercritical mixtures 81
On Density Microheterogeneities in Dilute Supercritical Solutions 82
Introduction 82
Conclusion 86
Why density augmentation occurs in dilute supercritical solutions 88
1. Introduction 88
2. Fluctuations in SCR mixtures 89
3. Experimental determination of the local density microheterogeneities in pure SCF 89
4. Local density augmentation in SCR mixtures 89
5. Solute±solute interactions 91
6. Conclusion 93
Appendix A 93
References 93
Fluctuations in dilute binary supercritical mixtures 95
Entrainer effect in supercritical mixtures 117
1. Introduction 117
2. Theory and formulas 119
3. Calculations 123
4. Conclusion 125
Appendix A 126
Appendix B 126
Appendix C 128
Appendix D 129
Appendix E 130
References 130
The solubility of solids in mixtures composed of a supercritical fluid and an entrainer 132
1. Introduction 132
2. Theory 133
3. Calculations 139
4. Discussion and conclusion 143
Appendix A 145
References 145
A Simple Equation for the Solubility of a Solid in a Supercritical Fluid Cosolvent with a Gas or Another Supercritical Fluid 147
1. Introduction 147
2. Theory 147
3. Calculations 149
4. Results 149
6. Conclusion 151
Cubic Equation of State and Local Composition Mixing Rules: Correlations and Predictions. Application to the Solubility of Solids in Supercritical Solvents 152
Introduction 152
Theory and Formulas 153
Correlation of Solubility Data 154
Prediction of the Solubility of Solid Substances in SCF 155
Conclusion 156
Chapter 3 Solubility of gases in mixed solvents 158
Henry’s Constant in Mixed Solvents from Binary Data 159
1. Introduction 159
2. Theory 159
3. Calculations and Comparison with Experimental Data 162
Conclusion 163
Salting-Out or -In by Fluctuation Theory 165
1. Introduction 165
2. The Henry Constant in a Salt Solution 166
3. One-Parameter Gas Solubility in Aqueous Salt Mixtures: Comparison with Experiment 168
4. Salting-In or Salting-Out? 169
5. Discussion and Conclusion 170
Literature Cited 171
The Solubility of Binary Mixed Gases by the Fluctuation Theory 172
1. Introduction 172
2. Theory 172
3. Calculation Procedure 174
4. Results and Discussion 174
Literature Cited 175
Prediction of gas solubility in binary polymer + solvent mixtures 177
1. Introduction 177
2. Theory 178
3. The solubility of gases in binary polymer 1 solvent mixtures 179
4. Discussion 179
5. Conclusion 182
Appendix A 182
Appendix B 183
References 183
Ideal Multicomponent Liquid Solution as a Mixed Solvent 184
Introduction 184
Theory and Formulas 185
Applications 187
Conclusion 190
Acknowledgment 190
Literature Cited 191
Solubility and local structure around a dilute solute molecule in an aqueous solvent: From gases to biomolecules 192
1. Introduction 192
2. The application of the Kirkwood–Buff fluctuation theory of solutions to the activity coefficients in ternary and multicomponent solutions 193
3. Solubility of a protein in aqueous solutions 194
4. Solubility of a gas in aqueous salt solutions 195
5. The use of experimental solubility data to analyze hydration phenomena 196
6. Discussion and conclusion 198
Appendix A 199
References 199
Chapter 4 Solubility of pharmaceuticals and environmentally important compounds 201
Solubility of drugs in aqueous solutions Part 1. Ideal mixed solvent approximation 202
1. Introduction 202
2. Theory 203
3. Results and discussion 207
4. Conclusion 208
Acknowledgements 209
References 209
Solubility of drugs in aqueous solutions Part 2: Binary nonideal mixed solvent 211
1. Introduction 211
2. Theory and formulas 212
3. Calculations and results 214
4. Discussion 216
5. Conclusion 217
Appendix A 217
Solubility of drugs in aqueous solutions Part 3: Multicomponent mixed solvent 220
1. Introduction 220
2. Solubility of drugs in a multicomponent mixed solvent 222
3. Comparison with experiment 223
4. Discussion and conclusion 225
Acknowledgements 225
References 225
Solubility of drugs in aqueous solutions Part 4. Drug solubility by the dilute approximation 227
1. Introduction 227
2. Theory 228
3. Application of Eq. (28) to the solubility of drugs in a binary solvent 232
4. Discussion and conclusion 234
References 235
Solubility of drugs in aqueous solutions Part 5. Thermodynamic consistency test for the solubility data 236
1. Introduction 236
2. General relations for multicomponent mixtures 237
3. Thermodynamic consistency test regarding the solubility of drugs in binary aqueous mixed solvents 237
4. Numerical estimations 238
5. The use of the solubilities of anthracene in 1-propanol-2-propanol and anthracene in n-hexane–cyclohexane mixtures for the determination of the Dmax value 239
Solubility of Hydrophobic Organic Pollutants in Binary and Multicomponent Aqueous Solvents 244
Introduction 244
Experimental Data 247
Results of the Calculations 248
Discussion 249
Appendix 251
Literature Cited 254
Chapter 5 Aqueous solutions of biomolecules 255
A protein molecule in an aqueous mixed solvent: Fluctuation theory outlook 256
INTRODUCTION 256
THE KIRKWOOD-BUFF INTEGRALS IN TERNARY MIXTURES 257
THE EXCESS AND DEFICIT NUMBERS OF MOLECULES OF WATER AND COSOLVENT AROUND A PROTEIN MOLECULE 258
NUMERICAL ESTIMATIONS FOR VARIOUS SYSTEMS 258
RESULTS AND DISCUSSION 259
CONCLUSION 262
Relationship between preferential interaction of a protein in an aqueous mixed solvent and its solubility 265
1. Introduction 265
2. Theoretical part 266
3. Calculations 268
4. Discussion 269
5. Conclusion 270
References 270
A Protein Molecule in a Mixed Solvent: The Preferential Binding Parameter via the Kirkwood-Buff Theory 272
INTRODUCTION 272
IDEAL TERNARY MIXTURE 273
DISCUSSION 273
REFERENCES 274
Preferential hydration and solubility of proteins in aqueous solutions of polyethylene glycol 276
1. Introduction 276
2. Theoretical part 278
3. Numerical estimations for various water/protein/PEG systems 280
References 286
Effect of salts and organic additives on the solubility of proteins in aqueous solutions 287
1. Introduction 287
2. The aqueous protein solubility and the osmotic second virial coefficient 288
3. The aqueous protein solubility and the preferential binding parameter 289
4. Discussion 291
References 292
Local Composition in the Vicinity of a Protein Molecule in an Aqueous Mixed Solvent 294
1. Introduction 294
2. Theory 295
3. Calculation of ¢n12 (¢n32) and Their Dependence on Various Factors 296
4. Calculation of J21 (J23) and the Excesses (or Deficits) ¢n12 (¢n32) Using Various Theories 298
5. Discussion and Conclusion 300
Local Composition in Solvent + Polymer or Biopolymer Systems 303
1. Introduction 303
2. Theoretical Background 303
3. Excesses (or Deficits) in Various Solvent-Polymer (Protein) Mixtures 305
4. Discussion and Conclusion 308
References and Notes 312
Various Contributions to the Osmotic Second Virial Coefficient in Protein-Water-Cosolvent Solutions 313
1. Introduction 313
2. Theory 314
3. Numerical Estimations for Various Systems 315
4. Results 317
5. Discussion and Conclusion 317
References and Notes 318
Chapter 6 Water and dilute aqueous solutions 320
Simple Computer Experiments with Ordinary Ice 321
1. Introduction 321
2. Methodology and Program Code 321
3. Calculations 322
4. Results of Computations 323
5. Discussion of Results and Comparison with Available Models and Experimental Information 324
6. Conclusion 324
Cooperativity in Ordinary Ice and Breaking of Hydrogen Bonds 326
1. Introduction 326
2. H-Bond Energy Between Two Water Molecules with Various Numbers of Additionally Bound Water Molecules 327
3. Algorithm, Code, and Calculations 329
4. Results and Discussion 330
5. Conclusion 331
Appendix A 332
References and Notes 332
The Structure of Dilute Clusters of Methane and Water by ab Initio Quantum Mechanical Calculations 334
1. Introduction 334
2. Methodology of Calculations 336
3. Results of the ab Initio Computations 336
4. Discussion 338
5. Conclusion 339
References and Notes 339
Treatment of Dilute Clusters of Methanol and Water by ab Initio Quantum Mechanical Calculations 341
1. Introduction 341
2. Nanometer Features of Water and Methanol and their Mixture 342
3. Methodology of Calculations 344
4. Results of the ab Initio Computations 344
5. Discussion 346
6. Conclusions 348
References and Notes 348

Erscheint lt. Verlag 17.6.2009
Zusatzinfo VII, 346 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Dynamics • Kirkwood-Buff • liquid • Mixture • Multicomponent • Ruckenstein • thermodynamics
ISBN-10 1-4419-0440-9 / 1441904409
ISBN-13 978-1-4419-0440-9 / 9781441904409
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99