Nanopackaging (eBook)

Nanotechnologies and Electronics Packaging

James E. Morris (Herausgeber)

eBook Download: PDF
2008 | 2009
XXI, 543 Seiten
Springer US (Verlag)
978-0-387-47326-0 (ISBN)

Lese- und Medienproben

Nanopackaging -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a comprehensive overview of nanoscale electronics and systems packaging, and covers nanoscale structures, nanoelectronics packaging, nanowire applications in packaging, and offers a roadmap for future trends. Composite materials are studied for high-k dielectrics, resistors and inductors, electrically conductive adhesives, conductive 'inks,' underfill fillers, and solder enhancement. The book is intended for industrial and academic researchers, industrial electronics packaging engineers who need to keep abreast of progress in their field, and others with interests in nanotechnology. It surveys the application of nanotechnologies to electronics packaging, as represented by current research across the field.


Nanotechnologies are being applied to microelectronics packaging, primarily in the applications of nanoparticle nanocomposites, or in the exploitation of the superior mechanical, electrical, or thermal properties of carbon nanotubes. Composite materials are studied for high-k dielectrics, resistors and inductors, electrically conductive adhesives, conductive "e;inks,"e; underfill fillers, and solder enhancement. "e;Nanopackaging"e; is intended for industrial and academic researchers, industrial electronics packaging engineers who need to keep abreast of their field, and others with interests in nanotechnology. It will survey the application of nanotechnologies to electronics packaging, as represented by current research across the field.

Foreword 5
Preface 7
Contents 11
Contributors 15
Chapter 1 Nanopackaging: Nanotechnologies and Electronics Packaging 23
1.1 Introduction 23
1.2 Computer Modeling 24
1.3 Nanoparticles 25
1.4 Carbon Nanotubes 27
1.5 Nanoscale Structures 28
1.6 “Nanointerconnects” 28
1.7 Conclusion 29
References 29
Chapter 2 Modelling Technologies and Applications 37
2.1 Introduction 37
2.2 Modelling Technologies 37
2.3 Modelling Applied to Fabrication Processes 42
2.4 Modelling Applied to Assembly Processes 47
2.5 Modelling Applied to Reliability Predictions 51
2.6 Conclusions 57
References 57
Chapter 3 Application of Molecular Dynamics Simulation in Electronic Packaging 61
3.1 Introduction 61
3.2 Molecular Dynamics Simulation 61
3.3 MD Simulation of the Thermal Cycling Test in Electronic Packaging 63
3.4 MD Study of Moisture Diffusion in Electronic Packaging 68
3.5 Material Properties of Epoxy Resin Compound Predicted by MD Simulation 71
3.6 Thermal Performance of Carbon Nanotubes Investigated by MD Simulations 73
3.7 Summary 78
References 78
Chapter 4 Advances in Delamination Modeling 82
4.1 Introduction 82
4.2 Delamination-Related Failures in Micro/Nanoelectronics 83
4.3 Continuum-Based Interface Delamination Modeling 83
4.4 Nanoscale-Based Modeling Techniques 97
4.5 Outlook: Handshaking Between Continuum and Nanoscaled Methods 105
4.6 Conclusion 108
References 109
Chapter 5 Nanoparticle Properties 113
5.1 Introduction 113
5.2 Structure 114
5.3 Electrical Properties 115
5.4 Catalysts 116
5.5 Melting Point Depression 116
5.6 Sintering 118
5.7 Mechanical Properties 119
5.8 Coulomb Block 120
5.9 Diffusion 122
5.10 Optical Properties 122
References 123
Chapter 6 Nanoparticle Fabrication 128
6.1 Introduction 128
6.2 Metal Nanoparticle Fabrication Method 129
6.3 Novel Processing Routes for Eco-Fabrication 131
6.4 Techniques to Avoid Clustering 135
6.5 Summary 138
References 138
Chapter 7 Nanoparticle-Based High-k Dielectric Composites: Opportunities and Challenges 140
7.1 Introduction 140
7.2 Dielectric Mechanisms 141
7.3 Materials Options for High-k Dielectrics 143
7.4 Nanoparticle-Based Dielectric Materials 145
7.5 Summary 153
References 154
Chapter 8 Nanostructured Resistor Materials 157
8.1 Introduction 157
8.2 Nanostructured Resistor Material Overview 157
8.3 Physical Properties 162
References 178
Chapter 9 Nanogranular Magnetic Core Inductors: Design, Fabrication, and Packaging 181
9.1 Introduction 181
9.2 Inductor Design 182
9.3 Fabrication Techniques 192
9.4 Nanogranular Magnetic Core Materials 193
9.5 Packaging Issues 201
9.6 Conclusion 201
References 202
Chapter 10 Nanoconductive Adhesives 207
10.1 Introduction 207
10.2 Recent Advances on Nano-Isotropic Conductive Adhesive (Nano-ICA) 10.2.1 ICAs with Silver (Ag) Nanowires 210
10.3 Recent Advances of Nano-ACA/ACF 10.3.1 Low-Temperature Sintering of Nano-Ag-Filled ACA/ACF 216
References 223
Chapter 11 Nanoparticles in Microvias 227
11.1 Introduction 227
11.2 Electrically Conductive Adhesives/Inks for Microvias 231
11.3 Nanoparticle-Based Conductive Adhesives in Microvias 233
11.4 Microvia Hole-Fill Study 244
11.5 Case Study: Test Vehicle with Filled Microvias for Z-Axis Interconnection 244
11.6 Conclusion 250
References 251
Chapter 12 Materials and Technology for Conductive Microstructures 256
12.1 Conductive Nanosized Particles for Microelectronics 256
12.2 Nanomaterials for Printing Technologies 258
12.3 The Principle and Equipment for Ink-Jet Printing 263
12.4 Physical Processes for Increasing the Conductivity of Printed Microstructures 267
12.5 Conductive Microstructures and Contacts Using Nanosized Particles 272
References 278
Chapter 13 A Study of Nanoparticles in SnAg-Based Lead-Free Solders 281
13.1 Introduction 281
13.2 Nanoparticle Effects on Solder IMC Grain Size and Thickness 282
13.3 Are the Nanoparticles Dissolved in the IMC? 291
13.4 Nanoparticle Effects on Solder Ball Hardness 292
13.5 Fracture in IMCs in High-Impact Pull Test 295
13.6 Nanoparticle Effects on Drop Test Performance 296
13.7 Conclusion 300
References 301
Chapter 14 Nano-Underfills for Fine-Pitch Electronics 302
14.1 Introduction 302
14.2 Potential of Nano-Underfills 302
14.3 Nanoparticle Production 303
14.4 Surface Modification of Underfills 305
14.5 Computational Techniques for Property Design 306
14.6 Finite Element Model of Unit Cell 310
14.7 Prediction of CTE 310
14.8 Prediction of Elastic Modulus 313
14.9 Prediction of Bulk Modulus 313
14.10 Prediction of Poisson’s Ratio 314
14.11 Viscoelastic Model for Nano-Underfills 315
14.12 Input Constants for Viscoelastic Material Model 316
14.13 Material Property Measurement 322
14.14 Uniaxial Testing 322
14.15 Correlation of Stress-Relaxation Behavior 329
14.16 CTE Measurement 329
14.17 Thermal Shock Reliability Testing 331
14.18 Summary 336
References 337
Chapter 15 Carbon Nanotubes: Synthesis and Characterization 339
15.1 Introduction 339
15.2 Synthesis of MWCNTs 340
15.3 Synthesis of SWCNTs 340
15.4 Arc Discharge Method 341
15.5 Laser Ablation Method 345
15.6 Pulsed Corona Discharge Method 348
15.7 Other Methods 348
15.8 CVD Method 349
15.9 Vapor–Liquid–Solid (VLS) – CVD Method 355
References 356
Chapter 16 Characteristics of Carbon Nanotubes for Nanoelectronic Device Applications 359
16.1 Introduction 359
16.2 Classification of Carbon Nanotubes 361
16.3 Properties of Carbon Nanotubes 367
16.4 Applications 370
16.5 CNT with Single Junction 372
16.6 Field Effect Transistors 379
16.7 CNT-Based Single Electron Transistors 382
16.8 Integrated Device Fabrication 383
16.9 Limitations to Carbon Nanotube Technology 385
16.10 Nanopackaging 386
References 387
Chapter 17 Carbon Nanotubes for Thermal Management of Microsystems 390
17.1 Introduction 390
17.2 Physical Background 391
17.3 Nano-Thermal Interface Materials 395
17.4 Microchannel Coolers Based on Carbon Nanotubes 398
17.5 High Thermally Conductive Carbon Nanotube Bumps 402
17.6 Conclusions 404
References 405
Chapter 18 Electromagnetic Shielding of Transceiver Packaging Using Multiwall Carbon Nanotubes 407
18.1 Introduction 407
18.2 Fabrication of MWCNT Composites 409
18.3 Electromagnetic Shielding Performance of MWCNT Composites 413
18.4 Electromagnetic Shielding Performance of Transceiver Packages 416
18.5 Conclusion and Discussion 423
References 423
Chapter 19 Properties of 63Sn-37Pb and Sn-3.8Ag-0.7Cu Solders Reinforced With Single-Wall Carbon Nanotubes 426
19.1 Introduction 426
19.2 Experimental Aspects 427
19.3 Results and Discussion 430
19.4 Conclusions 449
References 450
Chapter 20 Nanowires in Electronics Packaging 452
20.1 Introduction 452
20.2 Nanowires and Packaging Research 453
20.3 Nanowires: Fabrication 454
20.4 Metal Nanowires: Materials 457
20.5 Segmented Metal Nanowires 457
20.6 Metal Nanowires: Structure and Configuration 458
20.7 Metal Nanowires: Mechanical Properties 458
20.8 Metal Nanowires and Temperature 459
20.9 Electrical Properties 460
20.10 Manipulation of Nanowires 461
20.11 Nanowires: Bonding and Joining 462
20.12 Nanowire Interaction with Electromagnetic Fields 463
20.13 Future Prospects 464
20.14 Conclusion 465
References 465
Chapter 21 Design and Development of Stress-Engineered Compliant Interconnect for Microelectronic Packaging 475
21.1 Introduction 475
21.2 Literature Review on Compliant Interconnects 476
21.3 Stress-Engineered Compliant Interconnects 478
21.4 Compliance Analysis 482
21.5 Compliant Interconnect Assembly Process 485
21.6 Accelerated Thermal Cycling Test of Underfilled Package 488
21.7 Thermal Cycling of Free-Air Sliding Contact Packages 491
21.8 Nanocantilever Fabrication for Sensing Applications 492
21.8.1 Fabrication Results 492
21.9 Summary 495
References 496
Unused references 498
Chapter 22 Flip Chip Packaging for Nanoscale Silicon Logic Devices: Challenges and Opportunities 501
22.1 Introduction 501
22.2 Space Transformation 505
22.3 Electrical Performance 511
22.4 Thermal Management 516
22.5 Structural Integrity 519
22.6 Form Factor Management 522
22.7 Summary 525
References 525
Chapter 23 Nanoelectronics Landscape: Application, Technology, and Economy 527
23.1 Introduction 527
23.2 Applications 527
23.3 Technology 535
23.4 Economy 541
23.5 Conclusions 543
References 545
Index 546

Erscheint lt. Verlag 30.12.2008
Zusatzinfo XXI, 543 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Carbon Nanotubes • nanocomposite resistors • nanoelectronic • nanomaterials • nanoparticles • nano-silica filler • nanotechnology • Nanotube
ISBN-10 0-387-47326-2 / 0387473262
ISBN-13 978-0-387-47326-0 / 9780387473260
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99