Statistical Analysis of Network Data (eBook)
XII, 386 Seiten
Springer New York (Verlag)
978-0-387-88146-1 (ISBN)
In recent years there has been an explosion of network data - that is, measu- ments that are either of or from a system conceptualized as a network - from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called 'network science.
Preface 7
Contents 9
Chapter 1 Introduction and Overview 13
1.1 Why Networks? 13
1.2 Examples of Networks 15
1.3 About this Book 23
Chapter 2 Preliminaries 26
2.1 Background on Graphs 26
2.2 Background in Probability and Statistics 35
2.3 Statistical Analysis of Network Data: Prelude 53
2.4 Additional Related Topics and Reading 56
Exercises 56
Chapter 3 Mapping Networks 60
3.1 Introduction 60
3.2 Collecting Relational Network Data 61
3.3 Constructing Network Graph Representations 67
3.4 Visualizing Network Graphs 69
3.5 Case Studies 74
3.6 Mapping Dynamic Networks 85
3.7 Additional Related Topics and Reading 87
Exercises 88
Chapter 4 Descriptive Analysis of Network Graph Characteristics 90
4.1 Introduction 90
4.2 Vertex and Edge Characteristics 91
4.3 Characterizing Network Cohesion 105
4.4 Case Study: Analysis of an Epileptic Seizure 125
4.5 Characterizing Dynamic Network Graphs 127
4.6 Additional Related Topics and Reading 130
Exercises 131
Chapter 5 Sampling and Estimation in Network Graphs 134
5.1 Introduction 134
5.2 Background on Statistical Sampling Theory 137
5.3 Common Network Graph Sampling Designs 142
5.4 Estimation of Totals in Network Graphs 148
5.5 Estimation of Network Group Size 156
5.6 Other Network Graph Estimation Problems 160
5.7 Additional Related Topics and Reading 162
Exercises 162
Chapter 6 Models for Network Graphs 164
6.1 Introduction 164
6.2 Random Graph Models 165
6.3 Small-World Models 180
6.4 Network Growth Models 183
6.5 Exponential Random Graph Models 191
6.6 Challenges in Modeling Network Graphs 202
6.7 Additional Related Topics and Reading 204
Exercises 206
Chapter 7 Network Topology Inference 208
7.1 Introduction 208
7.2 Link Prediction 210
7.3 Inference of Association Networks 218
7.4 Tomographic Network Topology Inference 234
7.5 Additional Related Topics and Reading 252
Exercises 253
Chapter 8 Modeling and Prediction for Processes on Network Graphs 256
8.1 Introduction 256
8.2 Nearest Neighbor Prediction 257
8.3 Markov Random Fields 260
8.4 Kernel-based Regression 268
8.5 Case Study: Predicting Protein Function 277
8.6 Modeling and Prediction for Dynamic Processes 282
8.7 Additional Related Topics and Reading 292
Exercises 293
Chapter 9 Analysis of Network Flow Data 296
9.1 Introduction 296
9.2 Gravity Models 298
9.3 Traffic Matrix Estimation 308
9.4 Estimation of Network Flow Costs 327
9.5 Additional Related Topics and Reading 339
Exercises 341
Chapter 10 Graphical Models 343
10.1 Introduction 343
10.2 Defining Graphical Models 344
10.3 Inference for Graphical Models 352
10.4 Additional Related Topics and Reading 354
Glossary of Notation 355
References 357
Author Index 382
Subject Index 390
Springer Series in Statistics 396
Erscheint lt. Verlag | 20.4.2009 |
---|---|
Reihe/Serie | Springer Series in Statistics | Springer Series in Statistics |
Zusatzinfo | XII, 386 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Biologie | |
Naturwissenschaften ► Physik / Astronomie | |
Technik | |
Schlagworte | Bioinformatics • complex networks • Graph • Network • network analysis • network modeling • network statistical |
ISBN-10 | 0-387-88146-8 / 0387881468 |
ISBN-13 | 978-0-387-88146-1 / 9780387881461 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 17,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich