New Horizons (eBook)

Reconnaissance of the Pluto-Charon System and the Kuiper Belt

C.T. Russell (Herausgeber)

eBook Download: PDF
2009 | 2009
IV, 402 Seiten
Springer New York (Verlag)
978-0-387-89518-5 (ISBN)

Lese- und Medienproben

New Horizons -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
New Horizons: Reconnaissance of the Pluto-Charon System and the Kuiper Belt C. T. Russell Originally published in the journal Space Science Reviews, Volume 140, Nos 1-4, 1-2. DOI: 10. 1007/s11214-008-9450-0 © Springer Science+Business Media B. V. 2008 Exploration is mankind's imperative. Since the beginnings of civilization, men and women have not been content to build a wall around their settlements and stay within its con nes. They explored the land around them, climbed the mountains, and scanned the horizons. The boldest among them pushed exploration to the most distant frontiers of the planet. As a result, much of the Earth was inhabited well before the days of the renowned European - th th plorers of the 15 and 16 centuries. Exploration did not cease, after the circumnavigation of the globe; it continued to the present. Today explorers are going in new directions, not just east and west, north and south. They explore backward in time and upward in space. Arc- ology explores the shorter time scales, and geochemistry the longer time scales of geophy- cal events: asteroidal and cometary collisions, magnetic reversals, continental formation and more. However, on Earth we cannot go back inde nitely, for much of the evidence of the very earliest days has been lost.
New Horizons: Reconnaissance of the Pluto-Charon System and the Kuiper Belt C. T. Russell Originally published in the journal Space Science Reviews, Volume 140, Nos 1-4, 1-2. DOI: 10. 1007/s11214-008-9450-0 (c) Springer Science+Business Media B. V. 2008 Exploration is mankind's imperative. Since the beginnings of civilization, men and women have not been content to build a wall around their settlements and stay within its con nes. They explored the land around them, climbed the mountains, and scanned the horizons. The boldest among them pushed exploration to the most distant frontiers of the planet. As a result, much of the Earth was inhabited well before the days of the renowned European - th th plorers of the 15 and 16 centuries. Exploration did not cease, after the circumnavigation of the globe; it continued to the present. Today explorers are going in new directions, not just east and west, north and south. They explore backward in time and upward in space. Arc- ology explores the shorter time scales, and geochemistry the longer time scales of geophy- cal events: asteroidal and cometary collisions, magnetic reversals, continental formation and more. However, on Earth we cannot go back inde nitely, for much of the evidence of the very earliest days has been lost.

Foreword 6
The New Horizons Pluto Kuiper Belt Mission: An Overview with Historical Context 8
Abstract 8
Mission Overview 9
Pluto Mission Background Studies 10
Voyager Pluto 10
Dedicated Pluto Mission Studies 11
The Birth of New Horizons 13
PKB Mission AO and Selection Process 13
Mission Development Overview 16
Launch and Early Flight 22
Concluding Remarks 25
Acknowledgements 25
References 25
The New Horizons Spacecraft 27
Abstract 27
Introduction 28
Spacecraft Configuration 31
Mechanical Configuration 31
System Configuration 32
Propulsion Subsystem 32
Guidance and Control 35
Attitude Control Modes 36
Attitude Control Requirements and Performance 37
Command and Data Handling 38
Command Management 39
Time Management 39
Data Management 39
Communication System 41
Command Reception and Tracking 41
Ultra-Stable Oscillator Performance 42
Downlink System Performance 42
Power System 43
Radioisotope Thermoelectric Generator Performance 43
Shunt Regulator Unit 43
Power Distribution Unit and Propulsion Diode Box 44
Thermal Management 46
Autonomy and Fault Protection 47
Performance and Lifetime 48
Acknowledgements 50
References 51
New Horizons Mission Design 52
Abstract 52
Introduction 53
Mission Design Requirements 53
Mission Scope and Objectives 53
Science Requirements 54
Program Requirements and Constraints 54
Mission Design Scenarios 55
Routes to Pluto 55
Launch Opportunities 56
New Horizons Approach 57
Baseline Mission Design 59
Launch 59
Interplanetary Trajectory 61
Jupiter Gravity-Assist Flyby 62
Pluto-Charon Encounter 65
Science Measurement Requirements 66
Priority Ranking 66
Requirements for Remote Sensing 67
Requirements for Atmosphere Investigation 67
Selection of Pluto Arrival Time 67
Pluto at Approach 68
Pluto Flyby Trajectory and Geometry 68
Encounter Sequence and Event Timeline 70
Deep Space Network Access Profile 70
Extended Mission to the Kuiper Belt and Beyond 71
Plans for Kuiper Belt Object Encounter 71
Departing the Solar System 73
Flight Results 73
Launch and Orbit Injection 73
Summary of Trajectory Corrections 74
Flyby of Asteroid 2002 JF56 75
DeltaV Status 75
Conclusion 76
Acknowledgements 76
References 76
Overview of the New Horizons Science Payload 78
Abstract 78
Introduction 79
Payload Pointing Control 79
Science Payload 80
Overview 80
Alice 82
Ralph: MVIC and LEISA 86
REX 88
LORRI 89
SWAP 90
PEPSSI 90
VB-SDC 91
Science Payload Commissioning Overview 92
In Flight Hibernation, Annual Checkouts, and Encounter Rehearsals 93
Current Status of the Science Payload 93
Acknowledgements 94
References 94
New Horizons: Anticipated Scientific Investigations at the Pluto System 95
Abstract 96
Introduction 96
Mission Science Goals 98
Geology and Morphology (Goals 1.1, 2.1, 2.2, 2.3, 2.8) 98
Surface Composition (Goals 1.2, 2.1, 2.4, 2.9) 102
Atmospheric and Particles/Plasma (Goals 1.3, 2.1, 2.5, 2.6, 2.7, 3.1) 102
Interiors, Environment, Origin and Evolution (Goals 3.2, 3.3, 3.4) 105
Kuiper Belt Investigation 105
Observations 105
Instrument Suite 105
Ralph: MVIC and LEISA 106
Alice 107
REX 108
LORRI 109
PEPSSI 109
SWAP 110
SDC 111
Mission Design 111
Encounter with Asteroid 2002 JF56 112
Encounter with Jupiter 112
Pluto 113
Cruise Phase 113
Approach Phase 114
Near Encounter Phase 115
Departure Phase 117
Kuiper Belt Objects 117
Meeting the Mission Scientific Objectives at the Pluto System 117
Group 1: Objectives Required for Mission Success 117
Characterize the Global Geology and Morphology of Pluto and Charon 117
Panchromatic Mapping 117
Color Mapping 118
Phase Angle Coverage 118
Map Surface Composition of Pluto and Charon 119
Characterize the Neutral Atmosphere of Pluto and Its Escape Rate 120
Compositional Measurements 120
Upper Atmospheric Thermal Structure 120
Lower Atmospheric Thermal Structure 120
Evolution and Escape Rate 120
Aerosols and Haze Detection 121
Group 2 Objectives 121
Characterize the Time Variability of Pluto's Surface and Atmosphere 121
Image Pluto and Charon in Stereo 122
Map the Terminators of Pluto and Charon with High Resolution 122
Map the Surface Composition of Selected Areas of Pluto and Charon with High Resolution 122
Characterize Pluto's Ionosphere and Solar Wind Interaction 123
Search for Neutral Species Including H, H2, HCN, and CxHy, and Other Hydrocarbons and Nitriles in Pluto's Upper Atmosphere, and Obtain Isotopic Discrimination where Possible 123
Search for an Atmosphere Around Charon 123
Determine Bolometric Bond Albedos for Pluto and Charon 124
Map the Surface Temperatures of Pluto and Charon 124
Group 3 Objectives 124
Characterize the Energetic Particle Environment of Pluto and Charon 124
Refine Bulk Parameters (Radii, Masses, Densities) and Orbits of Pluto and Charon 125
Search for Magnetic Fields of Pluto and Charon 125
Search for Additional Satellites and Rings 125
Broader Impact 125
Acknowledgements 127
References 127
Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission 130
Abstract 130
Introduction 131
Ralph Science Overview 133
Opto-Mechanical Design 136
The MVIC Focal Plane 137
The LEISA Focal Plane 139
The Solar Illumination Assembly (SIA) 140
Electronics 141
Pre-Launch Instrument Characterization 142
Component Level Measurements 143
LEISA Spectral Lineshape 143
MVIC Spectral Response 144
Full Instrument Level Measurements 145
Absolute Radiometry 145
Image Quality 146
SIA Pointing 146
Combined Pre-Launch and In-Flight Instrument Calibration Results 146
Image Quality and MTF 147
Optical Distortion 148
Radiometric Calibration 149
Anomalous Solar Light Leak 151
In-Flight Instrument Operation 152
Conclusion 153
Glossary 153
Acknowledgements 154
References 154
ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto-Kuiper Belt Mission 156
Abstract 156
Background 157
Scientific Objectives 157
Instrument Description 159
Overview 159
Opto-Mechanical Design Overview 160
Detector and Detector Electronics Overview 162
Instrument Electrical Design Overview 164
Low-Voltage Power Supply Electronics 164
Command-and-Data-Handling Electronics 165
Decontamination Heaters 165
High Voltage Power Supplies 167
Data Collection Modes Overview 167
Ground Calibration Radiometric Performance 168
Ground Dark Count Rate 168
Spatial/Spectral Resolution 169
Airglow Channel Point Spread Function 169
Airglow Channel Filled Slit Resolution 173
Solar Occultation Channel Point Spread Function 174
Ground Wavelength Calibration 174
Scattered Light Characteristics 176
Off-axis Light Scatter 176
Ly Scatter 176
Absolute Effective Area 179
Airglow Channel 179
Solar Occultation Channel 179
In-flight Performance 181
Commissioning Test Overview 181
Dark Count Rate 182
First Light Images 183
Image Histogram Exposures 183
Pixel List Mode Test Exposures 185
Conclusion 187
Acknowledgements 187
References 187
Long-Range Reconnaissance Imager on New Horizons 189
Abstract 189
Introduction 189
LORRI Requirements 192
LORRI Instrument Description 195
LORRI Overview 195
Design Requirements and Trades 197
Optical Design 199
Thermal Requirements and Design 199
Telescope Mechanical Requirements and Design 200
Instrument Integration, Focus, and Alignment 201
Contamination Control 202
Electronics 202
Focal Plane Unit 202
Associated Support Electronics 203
Flight Software 204
Laboratory Test and Calibration 204
Subassembly Test and Calibration 204
Instrument-Level Calibration 204
Calibration Setup 205
Laboratory Calibration Results 207
In-Flight Calibration 211
Summary 214
Acknowledgements 215
References 215
The New Horizons Radio Science Experiment (REX) 216
Abstract 216
Introduction 217
Overview 217
Implementation 218
Pluto Encounter 222
Encounter Geometry 222
Radio Occultation Sounding of Pluto and Charon 224
Introduction 224
Background and Motivation 225
Experiment Objectives, Methods of Analysis, and Predicted Performance 226
Pluto's Radius 226
Pluto's Neutral Atmosphere 228
Pluto's Ionosphere 230
Charon's Atmosphere and Ionosphere 230
Gravity Investigations 230
Approach 230
REX Contributions 232
Radiometry 236
Thermal Emission Observations 236
Surface Temperatures of Pluto and Charon 237
REX Implementation 239
Implementation-Overview 239
Extraction of Total Received Signal Power 240
Multiplierless, Anti-aliasing Filter Design 240
REX Commissioning 242
Purpose 242
Functional Verification 242
Evaluation of Spurious Responses, no Uplink 243
Uplink Signal Acquisition 243
USO Stability 244
REX Passband 245
HGA Beam Pattern 246
Radiometer Calibration 246
Summary 248
Acknowledgements 248
Appendix: System Function of the SCIC Filter 248
ATheory of the CIC-SCIC Filter 248
Cascade Integrator Comb (CIC) Filter 248
Sharpened CIC Filter 249
Lowpass, Anti-aliasing Filter Design 250
References 256
The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons 259
Abstract 259
Introduction 259
Scientific Background and Objectives 260
Atmospheric Escape 262
Solar Wind Interaction at High Atmospheric Escape 263
Solar Wind Interaction at Low Atmospheric Escape 265
Solar Wind Interaction at Aphelion 267
Heliospheric Pickup Protons 268
Instrument Description 270
Electro-Optic Design 274
RPA Design 275
Deflector 276
ESA 276
Detector Design 277
Mechanical Design 278
Optics and Detector Mechanical Design 278
Aperture Door Design 282
Electronics Packaging and Cabling Design 283
Structural Design 284
Thermal Design 284
Electronics 284
CHAMPs 284
HVPS 285
Control Board 286
Modes of Operation 288
Flight Software 288
Overall Capabilities 288
Science-Data Collection 290
Instrument Performance 294
Laboratory Testing 294
RPA 295
Deflector System 296
ESA 297
Detectors 298
Instrument Modeling 298
Instrument Model with Ideal RPA 299
RPA Model 300
Science Operations and Data 302
Fluxes and Predicted Rates 303
Instrument Operations 305
Data Pipeline 305
Level 1 306
Level 2 306
Level 3 307
Early SWAP Observations 308
Conclusions 309
Acknowledgements 309
References 310
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission 312
Abstract 312
Introduction 314
Previous Similar Instrumentation 314
Scientific Background and Objectives 315
The Interaction of Pluto with the Solar Wind 315
PEPSSI Science Objectives 316
PEPSSI Objectives at Pluto 316
Group 1 Objective. 316
Group 2 Objectives. 316
Group 3 Objectives. 317
Science at Jupiter and During Cruise 317
Measurement Requirements 317
Measurement Ranges 317
Derived Instrument Specifications 317
Mass Resolution (Mass Uncertainty) 317
Species Mass Range 318
Sensitivity and Geometric Factor Requirements 318
Geometric Factor 318
Integration Interval 318
Measurement Resolution Requirements 319
Energy Resolution 319
TOF Resolution 319
Platform Requirements 319
Time Resolution Requirement 320
Timetagging Requirements 320
Science Data Synchronization 320
Calibration Requirements 320
Required Ground Calibration 320
In-flight Calibration Characterization 320
Energy Board Temperature Monitor 320
Technical Description 321
Instrument Overview 321
Differences from EPS on MESSENGER 324
Mechanical Design 325
Dimensions and Mounting 325
Mass Properties 328
Deployable Cover 328
Instrument Purge 328
Handling Requirements 329
Transportation and Storage 329
Vacuum and Outgassing Requirement 329
Detectors and Electronics 329
Energy Measure 330
Time-of-Flight Measure 330
Electronics 331
Operation 331
Science Mode 331
HVPS Activation 331
Cover Door Open 332
Test Mode 332
Calibration 332
Electrical Interface 332
PEPSSI Power Interface 332
PEPSSI Command and Telemetry Interface 332
Test Port Interface 334
HVPS Safing 334
PEPSSI Cover Release 334
Telemetered Data Products 334
Proton and Electron Energy Spectra 334
Heavy Ion Energy Spectra 335
TOF-Only Velocity Spectra 335
Singles-Event Data (for Event Validity Check) 336
PHA (Pulse Height Analysis) Event Data 336
Non-Packetized Housekeeping Data 338
Quick look Diagnostic Data 338
Instrument Data Rate Summary 338
Calibration 340
Memory Image Dump 341
Commands 341
Energy Commands 341
HVPS Commands 341
TOF Commands 341
Process Control Commands 341
Telemetry and Command Format 342
Data Rate and Volume 343
Telemetry Formatting 343
Instrument Transfer Frame (ITF) 343
Telemetry Interface 344
CCSDS Packetization 344
Memory Dump Packet 344
Command Formatting 345
Command Message 345
Command Format 346
Memory Load Command 346
Memory Dump Command 346
MET Time Message 346
Instrument Environmental Design Requirements 350
Thermal Interface 350
PEPSSI Thermal Design Requirements 350
Radiation Shielding Requirements 350
Electrostatic Requirements 350
Test Requirements 351
Vibration 351
Thermal 351
Acoustics and Shock 351
EMI/EMC 351
Performance 351
Data Conversion to Physical Units 351
Flux, Differential Intensity and Phase Space Density 352
Definition of Sensor Transfer Function and Geometric Factor 352
Goals of the PEPSSI Characterization and Calibration Efforts 353
Simulations 354
Geometric Factor 354
Ion Measurements 354
Electron Optics 354
Ion Energy Losses 356
TOF Measurements 356
Total Energy Measurement 356
TOF Versus Energy 356
Efficiencies 356
Electron Measurements 357
PEPSSI Flight Unit Calibration 358
The JHU/APL Calibration Facility 358
Test Set Up 360
Ground Calibration 360
Directionality 360
Time-of-Flight Resolution 362
Energy Resolution 364
Time-of-Flight versus Energy 364
Pulse Height Analysis 365
Efficiencies 367
Summary of PEPSSI Flight Model Calibrations 367
PEPSSI Engineering Model Calibrations 367
Original PEPSSI Foils 369
PEPSSI Start and EPS Stop Foil 369
Engineering Model Plans 369
In-flight Calibration 370
Flight Performance 370
Jupiter Flyby 370
Operations and Science 370
Instrument Operations 370
Cover Release In Space 373
Idle State (HVPS Disabled) 374
HVPS Activation 374
Science Mode Operation 374
Energy Leading Edge Discriminator (LED) Threshold 374
Stop Anode Light and Heavy Discriminator Thresholds 375
Constant Fraction Discriminator (CFD) Thresholds 375
Start Anode Discriminator Thresholds 375
Multiple Hit Check Enable/Disable 375
Power Down Operation 376
Data and Data Archiving 376
Level 1 376
Level 2 376
Summary of the Level 2 Header Data Units (HDUs) 377
PHA HDUs 377
Rate HDUs 377
Status HDUs 378
Level 3 378
MIDL 379
Conclusion 379
Acknowledgements 380
References 380
The Student Dust Counter on the New Horizons Mission 383
Abstract 383
Introduction 383
Science Background 384
Instrument Description 385
Sensor Design 386
PVDF Signal Generation 386
Sensor Construction 387
Mechanical Design 387
Thermal Design 387
Electrical Design 388
Analog Signal Chain 388
Onboard Stimulus 390
Digital Control Electronics 391
Software Design 391
Data Management 391
Autonomy Rules 391
In-Flight Calibration Functions 392
Instrument Calibration 392
PVDF Sensor Characterization 392
Electronics Calibration 393
Data Analysis 394
Initial Results 394
Initial Turn-on and Checkout 394
In Flight Calibration 395
Stimulus Calibration 395
Noise Floor Calibration 395
Dust Measurements 396
Conclusions 397
Acknowledgements 397
References 398

Erscheint lt. Verlag 28.2.2009
Zusatzinfo IV, 402 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Schlagworte Kuiper Belt objects observed • New Frontiers Mission • New Horizons book • New Horizons instruments • New Horizons Mission • New Horizons SSRv • Planet • planetary exploration mission • Pluto-Charon observed • Pluto mission • Solar • Solar System • solar system exploration • solar wind • space science reviews • Space Science Reviews book
ISBN-10 0-387-89518-3 / 0387895183
ISBN-13 978-0-387-89518-5 / 9780387895185
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 27,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Aufbau der Erde, Erdgeschichte und Geologie Deutschlands

von Alecia M. Spooner

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
22,99
Entstehung, Eigenschaften, Vorkommen, Abbau

von Jörn Wichert

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
39,99