The South China Sea (eBook)

Paleoceanography and Sedimentology

Pinxian Wang, Qianyu Li (Herausgeber)

eBook Download: PDF
2009 | 2009
X, 506 Seiten
Springer Netherland (Verlag)
978-1-4020-9745-4 (ISBN)

Lese- und Medienproben

The South China Sea -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Pinxian Wang and Qianyu Li The South China Sea (SCS) (Fig. 1. 1) offers a special attraction for Earth scientists world-wide because of its location and its well-preserved hemipelagic sediments. As the largest one of the marginal seas separating Asia from the Paci?c, the largest continent from the largest ocean, the SCS functions as a focal point in land-sea int- actions of the Earth system. Climatically, the SCS is located between the Western Paci?c Warm Pool, the centre of global heating at the sea level, and the Tibetan Plateau, the centre of heating at an altitude of 5,000m. Geomorphologically, the SCS lies to the east of the highest peak on earth, Zhumulangma or Everest in the Himalayas (8,848m elevation) and to the west of the deepest trench in the ocean, Philippine Trench (10,497m water depth) (Wang P. 2004). Biogeographically, the SCS belongs to the so-called 'East Indies Triangle' where modern marine and terrestrial biodiversity reaches a global maximum (Briggs 1999). Among the major marginal sea basins from the west Paci?c, the SCS presents some of the best conditions for accumulating complete paleoclimatic records in its hemipelagic deposits. These records are favorable for high-resolution pa- oceanographic studies because of high sedimentation rates and good carbonate preservation. It may not be merely a coincidence that two cores from the southern 14 SCS were among the ?rst several cores in the world ocean used by AMS C dating for high-resolution stratigraphy (Andree et al. 1986; Broecker et al. 1988).

Pinxian Wang was born in Shanghai in 1936. He graduated from the Moscow State University in 1960, majoring in paleontology, and was Alexander von Humboldt Fellow in 1981-82 in Kiel, Germany. He is now Professor at the Tongji University, where he was Director of the Department of Marine Geology and the Laboratory of Marine Geology for years. His research activities are mainly devoted to paleoceanography and micropaleontology in the Western Pacific and paleo-monsoon studies in East Asia, especially in the South China Sea. He was co-chief scientist of the Ocean Drilling Program Leg 184 to the South China Sea in 1999 and the Marco Polo Cruise to the South China Sea in 2005. He has promoted China's involvement in international deep-sea programs and founded the series of 'Asian Marine Geology Conferences'. He is Member of the Chinese Academy of Science, Honorary Fellow of the Geological Society London, AAAS Fellow,and Milutin Milankovic Medalist of EGU in 2007.


Pinxian Wang and Qianyu Li The South China Sea (SCS) (Fig. 1. 1) offers a special attraction for Earth scientists world-wide because of its location and its well-preserved hemipelagic sediments. As the largest one of the marginal seas separating Asia from the Paci?c, the largest continent from the largest ocean, the SCS functions as a focal point in land-sea int- actions of the Earth system. Climatically, the SCS is located between the Western Paci?c Warm Pool, the centre of global heating at the sea level, and the Tibetan Plateau, the centre of heating at an altitude of 5,000m. Geomorphologically, the SCS lies to the east of the highest peak on earth, Zhumulangma or Everest in the Himalayas (8,848m elevation) and to the west of the deepest trench in the ocean, Philippine Trench (10,497m water depth) (Wang P. 2004). Biogeographically, the SCS belongs to the so-called "e;East Indies Triangle"e; where modern marine and terrestrial biodiversity reaches a global maximum (Briggs 1999). Among the major marginal sea basins from the west Paci?c, the SCS presents some of the best conditions for accumulating complete paleoclimatic records in its hemipelagic deposits. These records are favorable for high-resolution pa- oceanographic studies because of high sedimentation rates and good carbonate preservation. It may not be merely a coincidence that two cores from the southern 14 SCS were among the ?rst several cores in the world ocean used by AMS C dating for high-resolution stratigraphy (Andree et al. 1986; Broecker et al. 1988).

Pinxian Wang was born in Shanghai in 1936. He graduated from the Moscow State University in 1960, majoring in paleontology, and was Alexander von Humboldt Fellow in 1981-82 in Kiel, Germany. He is now Professor at the Tongji University, where he was Director of the Department of Marine Geology and the Laboratory of Marine Geology for years. His research activities are mainly devoted to paleoceanography and micropaleontology in the Western Pacific and paleo-monsoon studies in East Asia, especially in the South China Sea. He was co-chief scientist of the Ocean Drilling Program Leg 184 to the South China Sea in 1999 and the Marco Polo Cruise to the South China Sea in 2005. He has promoted China’s involvement in international deep-sea programs and founded the series of "Asian Marine Geology Conferences". He is Member of the Chinese Academy of Science, Honorary Fellow of the Geological Society London, AAAS Fellow,and Milutin Milankovic Medalist of EGU in 2007.

Contents 6
Contributors 10
Introduction 12
Appendix 18
References 25
Oceanographical and Geological Background 35
Introduction 35
2.1 Bathymetry and Geomorphology 36
2.2 Oceanography 38
Monsoon 39
Surface Circulation 42
Surface Temperature and Salinity 44
Thermocline and Upwelling 48
Water Exchange with Pacific and Kuroshio Intrusion 50
Deep Water Circulation 55
Other Oceanographic Features 58
Oceanographic Summary 58
2.3 Tectonic History and Sedimentary Basins 59
Prior Terrains and Opening of the SCS 61
Step-Wise Closure of the Sea Basin 68
Formation of Shelf-Slope Sedimentary Basins 69
South China Sea 70
Sediments of the SCS Shelf-Slope Basins: An Overview 74
Summary of Tectonics and Basin Formation 77
References 78
Stratigraphy and Sea Level Changes 84
Introduction 84
3.1 Lithostratigraphic Overview (Li Q. and Zhong G.) 85
Pre-Cenozoic Basement 85
Lithostratigraphy of Syn-Rift Sediments 85
Post-Rift Sediments in Shelf-Slope Basins 89
Deep Water Lithostratigraphy 95
3.2 Biostratigraphic Framework (Li Q.) 102
Floral and Shallow-Water Faunal Assemblages 102
Planktonic Foraminiferal and Nannofossil Biostratigraphy 104
Quaternary Lithobiostratigraphic Events 107
3.3 Isotopic and Astronomical Stratigraphy (Tian J. and Li Q.) 109
Neogene Isotopic Records at Site 1148 109
PlioceneÒPleistocene Isotopic Records at Site 1143 116
3.4 Stratigraphy of Major Shelf and Slope Basins ( Zhong G. and Li Q.) 118
Northern South China Sea Basins 120
Southern South China Sea Basins 137
3.5 Regional Sea Level Changes (Zhong G. and Li Q.) 156
Late Quaternary Sea Level Changes 157
Long-Term Sea Level Changes Since the Oligocene 158
New Approach Toward Fine-Scale Sea Level Magnitude 160
Summary of South China Sea stratigraphy 164
References 166
Sedimentology 180
Introduction 180
4.1 Surface Deposition Patterns (Liu Z.) 181
Deposit Distribution Patterns 181
Sediment Transport 187
4.2 Terrigenous Deposition (Liu Z.) 189
Clay Mineralogy and Geochemistry of Source Areas 189
Clay Minerals 190
Geochemistry 196
Terrigenous Sediment Supply in Glacial Cycles 201
Long-Term Changes of Terrigenous Sediment Supply 208
4.3 Biogenic Deposition 213
Carbonate 213
Opal (Wang R.) 226
4.4 Coral Reefs (Yu K. and Zhao J.) 238
Modern Coral Reef Distribution 239
Carbonate Platform Sediments and Calcium Carbonate Production 246
Reef History 257
4.5 Volcanic Deposition (Liu Z.) 264
Volcanic Rock Distribution 264
Volcanic Ash Records 266
Case Studies: Pinatubo, Toba 267
4.6 Estimation of Deposit Mass Since the Oligocene ( HuangW. andWang P.) 271
Data Sources and Analyses 272
Sediment Distribution and Mass 274
Estimation of Terrigenous and Carbonate Masses 276
Depositional Patterns 278
Major Characteristics of SCS Sedimentation 285
References 287
Upper Water Structure and Paleo-Monsoon 305
Introduction 305
5.1 Sea Surface Temperature History (Jian Z. and Tian J.) 306
SST Proxies 306
Paleo-SST Reconstruction 311
Paleo-SST Patterns 320
5.2 Thermocline Depth History (Tian J. and Jian Z.) 326
Proxies of Thermocline Depth 326
Paleo-Thermocline Depth 328
5.3 Vegetation History in Deep-Sea Record (Sun X.) 336
Pollen Distribution in Surface Sediments 337
Long-Term Evolution 339
Last Glacial Pollen Records: North-South Differences 350
North-South Comparison of the Vegetation During the LGM 357
5.4 Monsoon History (Jian Z. and Tian J.) 359
Monsoon Proxies 360
Tectonic-Scale Long-Term Evolution 368
Orbital-Scale Variability 371
Suborbital-Scale Variability 382
Summary 389
References 390
Deep Waters and Oceanic Connection 403
Introduction 403
6.1 Modern DeepWaters and Their Faunal Features 404
Marginal Seas in the Western Pacific 404
Modern Intermediate and Deep Waters in the South China Sea 405
Modern Deep-Sea Benthic Foraminifera and Ostracods 406
6.2 Late Quaternary Deep-Water Faunas and Stable Isotopes 410
6.3 Neogene and Oligocene Deep-Water Benthic Faunas from ODP Leg 184 Sites 413
Site 1148 Benthic Foraminifera 413
Site 1148 Ostracods 420
Faunal Indication of Deep-Water Mass Changes 420
6.4 DeepWater Evolution: Evidence from Carbonate Preservation and Isotopes 427
Carbonate Dissolution 427
Isotopic Records 430
6.5 Oceanic Connection 433
Summary 435
References 438
Biogeochemistry and the Carbon Reservoir 446
Introduction 446
7.1 Productivity and Nutrient Dynamics in the Modern South China Sea ( Zhao M.) 447
Primary Productivity 447
Nutrient Supplies 449
Community Structure, Export Productivity and Sedimentary Biogenic Content 452
7.2 Paleoproductivity Reconstruction of the South China Sea ( Zhao M.) 456
Patterns of Productivity Changes During Glacial-Interglacial Oscillations 456
Pre-Pleistocene Paleoproductivity Changes 464
7.3 Carbon Reservoir Changes (Wang P., Tian J. and Li J.) 466
Modern Carbon Cycling 466
Late Quaternary d13C Cyclicity 470
Long-Term Trend of Carbon Isotopes 480
Summary 483
References 483
History of the South China Sea – A Synthesis 491
Introduction 491
8.1 Evolution of the South China Sea Basin 492
Pre-Spreading Stage in the Early Paleogene 492
Seafloor Spreading in the Oligocene-Early Miocene 493
Post-Spreading Stage Since the Late Miocene 494
8.2 Evolution of the East Asian Monsoon 495
Summer Monsoon and Chemical Weathering 495
Winter Monsoon and North-South Contrast 497
East and South Asian Monsoons 498
8.3 Evolution of Continent-Ocean Interactions 500
References 501
Index 503

Erscheint lt. Verlag 27.5.2009
Reihe/Serie Developments in Paleoenvironmental Research
Developments in Paleoenvironmental Research
Zusatzinfo X, 506 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Technik
Schlagworte East Asian Monsoon • geomorphology • hydrogeology • Marine • Marine Geology • Mineral Resources • ocean • Ocean Drilling Program • Oceanic • Oceanography • Paleoceanography • sea level • Sediment • Sedimentology • West Pacific
ISBN-10 1-4020-9745-X / 140209745X
ISBN-13 978-1-4020-9745-4 / 9781402097454
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 61,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich