Privacy-Preserving Data Mining (eBook)

Models and Algorithms
eBook Download: PDF
2008 | 2008
XXII, 514 Seiten
Springer US (Verlag)
978-0-387-70992-5 (ISBN)

Lese- und Medienproben

Privacy-Preserving Data Mining -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Advances in hardware technology have increased the capability to store and record personal data. This has caused concerns that personal data may be abused. This book proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. The book is designed for researchers, professors, and advanced-level students in computer science, but is also suitable for practitioners in industry.


Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes.Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions.Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners. 

An Introduction to Privacy-Preserving Data Mining.- A General Survey of Privacy-Preserving Data Mining Models and Algorithms.- A Survey of Inference Control Methods for Privacy-Preserving Data Mining.- Measures of Anonymity.- k-Anonymous Data Mining: A Survey.- A Survey of Randomization Methods for Privacy-Preserving Data Mining.- A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining.- A Survey of Quantification of Privacy Preserving Data Mining Algorithms.- A Survey of Utility-based Privacy-Preserving Data Transformation Methods.- Mining Association Rules under Privacy Constraints.- A Survey of Association Rule Hiding Methods for Privacy.- A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries.- A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data.- A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data.- A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods.- Private Data Analysis via Output Perturbation.- A Survey of Query Auditing Techniques for Data Privacy.- Privacy and the Dimensionality Curse.- Personalized Privacy Preservation.- Privacy-Preserving Data Stream Classification.

Erscheint lt. Verlag 10.6.2008
Reihe/Serie Advances in Database Systems
Advances in Database Systems
Zusatzinfo XXII, 514 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Kryptologie
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften
Schlagworte algorithm • algorithms • association rule hiding • classification • cryptographic approaches • Data Analysis • Data Mining • distributed priv • distributed privacy-preserving data mining • Dom • high dimensional privacy-preserving data mining • Information • K-anonymity • personalized privacy • privacy • privacy applications • privacy-preserving data mining • query auditing • randonization • stream privacy • surveys on privacy-preserving data mining • theoretical challenges
ISBN-10 0-387-70992-4 / 0387709924
ISBN-13 978-0-387-70992-5 / 9780387709925
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99