Bioactive Molecules and Medicinal Plants (eBook)

eBook Download: PDF
2008 | 2008
XXIII, 379 Seiten
Springer Berlin (Verlag)
978-3-540-74603-4 (ISBN)

Lese- und Medienproben

Bioactive Molecules and Medicinal Plants -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book on medicinal plant biotechnology covers recent developments in this field. It includes a comprehensive up-to-date survey on established medicinal plants and on molecules which gained importance in recent years. No recently published book has covered these carefully selected topics. The contributing scientists have been selected on the basis of their involvement in the related plant material as evident by their internationally recognised published work.

Preface 5
About the editors 6
Contents 7
Drug Discovery from Plants 21
1.1 The Role of Plants in Human History 21
1.2 The Role of Plant- Derived Compounds in Drug Development 24
1.2.1 Plant Secondary Metabolites as Drug Precursors 24
1.2.2 Plant Secondary Metabolites as Drug Prototypes 26
1.2.3 Plant Secondary Metabolites as Pharmacological Probes 28
1.3 Recent Developments in Drug Discovery from Plants 29
1.3.1 New Plant- Derived Drugs Launched Since 2001 29
1.3.2 Examples of Plant- Derived Compounds Currently Involved in Clinical Trials 31
1.3.3 Plant Extracts Currently Involved in Clinical Trials 35
1.4 Recent Trends and Future Directions 38
References 40
Grapevine Stilbenes and Their Biological Effects 45
2.1 Introduction 45
2.2 Epidemiology 46
2.3 Chemistry of Stilbenes 47
2.3.1 Characterisation 47
2.3.2 Biosynthetic Pathway 52
2.3.3 Distribution in Vitis vinifera 53
2.3.4 Determination of Stilbenes in Wine 53
2.4 Biological and Pharmacological Activities 55
2.4.1 Bioavailability and Metabolism 55
2.4.2 Cardiovascular Protection 59
2.4.3 Cancer Chemoprevention 63
2.4.4 Neurodegenerative Diseases 66
2.5 Conclusion 69
References 69
Abbreviations 75
Research into Isoflavonoid Phyto- oestrogens in Plant Cell Cultures 75
3.1 Introduction 76
3.2 The Influence of the Basic Experimental Media on the Biosynthesis of Isoflavones in In Vitro Cultures 77
3.3 The Influence of Physical Factors on the Biosynthesis and Accumulation of Isoflavonoids in In Vitro Cultures 79
3.4 The Effect of Technological Procedures on the Biosynthesis and Accumulation of Isoflavonoids in In Vitro Cultures 80
3.4.1 Elicitation 81
3.4.2 Supplementation with Biosynthesis Precursors 90
3.4.3 Biotransformation 91
3.4.4 Genetic Modifications 93
3.5 In Vitro Cultures of Legume Plants Oriented for Selective Production of Phyto- oestrogens 97
References 100
Abbreviations 105
Secondary Metabolite Production from Plant Cell Cultures: the Success Stories of Rosmarinic Acid and Taxol 105
4.1 Introduction: Cell Factories at the Cross Point 106
4.2 Rosmarinic Acid 107
4.2.1 General Information 107
4.2.2 Historical Development of In Vitro RA Production – a Brief Overview 107
4.2.3 Stimulation of Biosynthetic Pathways Leads to Enhanced RA Accumulation In Vitro 108
4.2.4 Is RA Biosynthesis Growth Dependent? 109
4.2.5 Is RA Accumulation Related to Culture Differentiation? 110
4.2.6 Recent Attempts to Scale Up RA Production 111
4.2.7 RA Production in Immobilized Cell Cultures 112
4.3 Taxol 112
4.3.1 General Information 112
4.3.2 Historical Development of In Vitro Taxol Production – a Brief Overview 113
4.3.3 Stimulation of Biosynthetic Pathways Leads to Enhanced Taxol Accumulation In Vitro 114
4.3.4 Is Taxol Biosynthesis Growth and Differentiation Dependent? 116
4.3.5 Recent Attempts to Scale Up Taxol Production 117
4.3.6 Taxol Production in Immobilized Cell Cultures 117
4.4 Conclusions 118
References 118
Guggulsterone: a Potent Natural Hypolipidemic Agent from Commiphora wightii – Problems, Perseverance, and Prospects 121
Abbreviations 122
5.1 Introduction 122
5.2 Distribution 122
5.3 Biology 122
5.4 Gum- Resin Production 123
5.5 Chemistry 124
5.6 Methods of Analysis 124
5.6.1 Thin- Layer Chromatography 124
5.6.2 High- Performance Liquid Chromatography 129
5.7 Traditional Therapeutic Uses 129
5.8 Pharmacology 130
5.8.1 Animal and Clinical Trials 130
5.8.2 Mechanism of Action 131
5.8.3 Other Potential Activities 132
5.8.4 Toxicity 133
5.9 Biotechnological Approaches 133
5.9.1 Micropropagation 133
5.9.2 Somatic Embryogenesis 134
5.9.3 Resin Canal Formation 135
5.9.4 Guggulsterone Production 135
5.10 Future Prospects 139
Acknowledgements 139
References 139
Silybum marianum ( L.) Gaertn: the Source of Silymarin 142
Abbreviations 143
6.1 Introduction 143
6.2 Botany 144
6.3 Chemical Composition of S. marianum Fruits 145
6.4 Pharmacology of Silymarin 149
6.4.1 Mechanisms of Action 150
6.4.2 Pharmacological Applications 151
6.4.3 Bioavailability 157
6.4.4 Toxicology 158
6.4.5 Therapeutics 158
6.5 Biotechnology 159
Acknowledgements 163
References 163
The Production of Dianthrones and Phloroglucinol Derivatives in St. John’s Wort 168
7.1 Introduction 168
7.2 Dianthrone and Phloroglucinol Derivatives Family of Compounds in Hypericum perforatum 169
7.2.1 Botany of Hypericum 171
7.2.2 Medicinal Uses of Hypericin and Hyperforin 171
7.3 Biotechnology for the Production of Hypericin and Hyperforin 173
7.3.1 Biosynthesis of Hypericin and Hyperforin in Mature Plants 173
7.3.2 Plant Cell Biotechnology 175
7.3.3 Influences on Hypericin and Hyperforin Productivity by Other Factors 178
7.3.4 New Directions for Hypericin and Hyperforin Production 180
7.4 Conclusions 181
References 182
Production of Alkaloids in Plant Cell and Tissue Cultures 184
8.1 Introduction 184
8.2 Correlation Between Organogenesis, Somatic Embryogenesis and Isoquinoline Alkaloid Accumulation 187
8.3 Hairy Roots and Tropane and Morphinan Alkaloid Accumulation 189
8.4 Conclusion and Perspective 190
References 191
Bacopa monnieri, a Nootropic Drug 194
9.1 Introduction 194
9.2 Chemical Constituents 195
9.3 Analysis of Saponins of B. monnieri 203
9.3.1 Pharmacological Studies 203
9.3.2 Clinical Studies 207
9.3.3 Concluding Remarks 208
9.4 Biotechnology and Tissue Culture Studies on B. monniera 209
Acknowledgments 211
References 211
Chemical Profiling of Nothapodytes nimmoniana for Camptothecin, an Important Anticancer Alkaloid: Towards the Development of a Sustainable Production System 215
Abbreviations 216
10.1 Introduction 216
10.2 N. nimmoniana: Ecology and Distribution 219
10.3 Basic Patterns of Accumulation of CPT in N. nimmoniana 221
10.4 Chemical Profiling of Populations of N. nimmoniana for CPT 222
10.5 Modeling Habitat Suitability for CPT Production 225
10.6 Development of a Sustainable Extraction Approach 227
10.7 Conclusions 228
Acknowledgments 229
References 229
Colchicine – an Overview for Plant Biotechnologists 232
Abbreviations 233
11.1 Introduction 233
11.2 The Alkaloid Colchicine 235
11.3 Toxicity of Colchicine 235
11.4 Biological Effects of Colchicine 236
11.5 Colchicine as a Medicine 239
11.6 Botanical Use of Colchicine 239
11.7 Chemistry of Colchicine 240
11.8 Occurrence 242
11.9 Biotechnological Approaches for the Production of Colchicine 242
11.10 Conclusion 245
Acknowledgements 245
References 246
In Vitro Azadirachtin Production 250
Abbreviations 251
12.1 Introduction 251
12.2 Chemistry of Azadirachtin 253
12.3 Mode of Action of Azadirachtin 254
12.4 Biosynthetic Pathway for Azadirachtin 255
12.5 Qualitative and Quantitative Analysis of Azadirachtin 255
12.6 Availability of Azadirachtin 259
12.7 Plant Cell/ Tissue Culture: an Alternative for Azadirachtin Production 260
12.7.1 Azadirachtin Production from Plant Cell/ Tissue Cultures of Azadirachta indica 260
12.7.2 Yield Improvement Strategies 261
12.8 Stability of Azadirachtin 266
12.9 Scale- up of In Vitro Azadirachtin Production 266
12.10 Conclusion 267
References 268
Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential 272
Abbreviations 273
13.1 Introduction 273
13.2 Biological Activities of AGP 276
13.3 Role of AGPs in Reproductive Organ Development 278
13.4 Signaling Role of AGP 279
13.5 Abiotic Stress Tolerance Conferred by AGP 280
13.6 Probable Role in PCD 280
13.7 Commercial Uses of Gum Arabic 281
13.8 AG as Dietary Fiber and Prebiotics 281
13.9 AG as Immunomodulators and Immunity Enhancers 282
13.10 Echinacea- AG as a Nutraceutical 283
13.11 Other Uses of AG 283
13.12 Scope of Exploiting the Potentials of AGP and AG in Plant Biotechnology and Therapeutics 284
13.13 Concluding Remarks 284
Acknowledgments 285
References 285
Hairy Roots: a Powerful Tool for Plant Biotechnological Advances 288
14.1 Introduction 289
14.2 Hairy Roots Are on the Way to towards an Experimental Model 289
14.3 Improvement in the Productivity of Hairy Roots: Biotic and Abiotic Treatments or Metabolite Trapping 292
14.4 Potential Discovery of Metabolic Genes from Transcriptome Analysis of T- DNA Activation Tagging or Elicited Hairy Roots 294
14.5 RNA Silencing via Hairy Root: a Powerful Tool for Loss- of- Function Analyses of Genes 294
14.6 Metabolic Engineering of the Hairy Root System 295
14.7 Hairy Roots: A Novel System for Molecular Farming 296
14.8 Phytoremediation Process for Cleaning up the Environment and More Knowledge on Root Adsorption 296
14.9 Scale up and Technological Integration into Industry 297
14.10 Perspectives 298
References 299
Abbreviations 301
Hairy Roots of Catharanthus roseus: Efficient Routes to Monomeric Indole Alkaloid Production 301
15.1 Introduction 302
15.2 Materials and Methods 302
15.2.1 Bacterial Strain 302
15.2.2 Plant Material 303
15.2.3 Hairy Root Induction 303
15.2.4 Liquid Hairy Root Culture 303
15.2.5 Methyl Jasmonate Treatment 303
15.2.6 Alkaloid Identification by Ceric Ammonium Sulphate Reagent 304
15.2.7 Serpentine and Ajmalicine Content Determination by Spectrofluorometry 304
15.2.8 Catharanthine Content Determination by High- Performance Liquid Chromatography Analysis 304
15.2.9 Statistical Analysis 305
15.3 Results and Discussion 305
15.4 Conclusion 310
References 310
Roseroot ( Rhodiola rosea L.): Effect of Internal and External Factors on Accumulation of Biologically Active Compounds 312
16.1 Introduction 313
16.2 Plant Characteristics 313
16.3 Intraspecific Variability 315
16.4 Accumulation of Biomass and Biologically Active Compounds in the Underground Organs of Roseroot During Plant Development 320
16.5 Effect of Ecological Factors on the Accumulation of Biomass and Biologically Active Compounds in the Underground Organs of Roseroot 323
16.6 Effect of Post- harvest Treatment on the Quality of Raw Material and Extracts 325
Acknowledgements 328
References 329
Apoptosis and Plant- Derived Pharmaceuticals 331
17.1 Introduction 17.1.1 Molecular Regulation of Apoptosis 331
17.2 Plant Antitumoral Substances 332
17.3 Conclusion 336
References 337
The Indian Herbal Drugs Scenario in Global Perspectives 339
18.1 Introduction 339
18.2 Indian System of Medicine 342
18.3 World- Wide Use of Medicinal Aromatic Plants 350
18.4 Supply and Demand of Medicinal Plants 351
18.5 Medicinal Plant Biodiversity 352
18.6 Traditional Medicine in Healthcare 354
18.7 Indian Pharmaceutical Industries 355
18.8 Quality of Herbal Drugs 356
18.9 Concluding Remarks 357
Acknowledgements 358
References 358
Phytochemical Standardization of Herbal Drugs and Polyherbal Formulations 362
19.1 Introduction 362
19.2 Phytochemical Standardization 365
19.2.1 Sample Preparation 366
19.2.2 Preliminary Screening for Chemical Groups and Quantification of Chemical Groups 367
19.2.3 Phytochemical Profiles – Fingerprinting 367
19.2.4 Marker Compound Analysis 370
19.2.5 Multiple Marker- Based Evaluation 371
19.2.6 Polyherbal Formulations 372
19.2.7 Hyphenated Techniques 374
19.2.8 Reference Compounds 377
19.3 Some Examples 19.3.1 Raw Material 377
19.3.2 Formulation 379
19.4 Conclusion 379
Acknowledgments 379
References 380

Erscheint lt. Verlag 16.10.2008
Zusatzinfo XXIII, 379 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Chemie
Technik
Schlagworte Biotechnology • drug discovery • Medicinal plants • pharmaceuticals • pharmacology • Plant Biotechnology • Protein • Roots • secondary metabolites
ISBN-10 3-540-74603-X / 354074603X
ISBN-13 978-3-540-74603-4 / 9783540746034
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Skript 7 Enzyme; Vitamine; Organstoffwechsel; Molekularbiologie

von Endspurt Vorklinik

eBook Download (2023)
Georg Thieme Verlag KG
22,99