Computational Methods in Transport (eBook)

Granlibakken 2004

Frank Graziani (Herausgeber)

eBook Download: PDF
2006 | 2006
XVII, 539 Seiten
Springer Berlin (Verlag)
978-3-540-28125-2 (ISBN)

Lese- und Medienproben

Computational Methods in Transport -
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Thereexistawiderangeofapplicationswhereasigni?cantfractionofthe- mentum and energy present in a physical problem is carried by the transport of particles. Depending on the speci?capplication, the particles involved may be photons, neutrons, neutrinos, or charged particles. Regardless of which phenomena is being described, at the heart of each application is the fact that a Boltzmann like transport equation has to be solved. The complexity, and hence expense, involved in solving the transport problem can be understood by realizing that the general solution to the 3D Boltzmann transport equation is in fact really seven dimensional: 3 spatial coordinates, 2 angles, 1 time, and 1 for speed or energy. Low-order appro- mations to the transport equation are frequently used due in part to physical justi?cation but many in cases, simply because a solution to the full tra- port problem is too computationally expensive. An example is the di?usion equation, which e?ectively drops the two angles in phase space by assuming that a linear representation in angle is adequate. Another approximation is the grey approximation, which drops the energy variable by averaging over it. If the grey approximation is applied to the di?usion equation, the expense of solving what amounts to the simplest possible description of transport is roughly equal to the cost of implicit computational ?uid dynamics. It is clear therefore, that for those application areas needing some form of transport, fast, accurate and robust transport algorithms can lead to an increase in overall code performance and a decrease in time to solution.

Contents 5
Introduction 12
I Astrophysics 17
Radiation Hydrodynamics in Astrophysics 18
1 De.ning Radiation Hydrodynamics Terms 18
2 Schemes Used in Astrophysics 19
3 Astrophysical Applications 21
4 SPH Radiation Transport 25
References 28
Radiative Transfer 30
in Astrophysical Applications 30
1 Introduction 30
2 Description of Radiation 31
3 Absorption, Emission and Scattering Coe.cients 32
4 Hierarchies of Approximations 35
5 General Problem 39
6 Exact Numerical Solution 41
7 Conclusions 47
References 47
Neutrino Transport 49
in Core Collapse Supernovae 49
1 The Core Collapse Supernova Paradigm 49
2 The 54
Neutrino Transport Equation 54
in Spherical Symmetry: An Illustrative Example 54
3 Finite Di.erencing of the 56
Neutrino Transport 56
Equation 56
in Spherical Symmetry 56
4 The General Case: The Multidimensional Neutrino 69
Transport Equations 69
5 Boltzmann Neutrino Transport: 73
The Current State of the Art 73
6 Previews of Coming Distractions: 77
Neutrino Flavor Transformation 77
7 Summary and Prospects 79
Acknowledgments 80
References 81
Discrete-Ordinates Methods 83
for Radiative Transfer 83
in the Non-Relativistic Stellar Regime 83
1 Introduction 83
2 The Approximate Radiation-Hydrodynamics Model 83
3 Discretization and Solution Techniques 87
References 94
II Atmospheric Science, Oceanography, and Plant Canopies 96
Effective Propagation Kernels in Structured Media with Broad Spatial Correlations, Illustration with Large-Scale Transport of Solar Photons Through Cloudy Atmospheres 97
1 Introduction and Overview 97
2 Extinction and Scattering Revisited, and Some Notations Introduced 100
3 Propagation 108
4 Multiple Scattering and Di.usions 126
5 Large-Scale 3D RT E.ects in Cloudy Atmospheres 134
6 Concluding Remarks 146
Acknowledgments and Dedication 148
References 148
Mathematical Simulation of the Radiative Transfer in Statistically Inhomogeneous Clouds 153
1 Introduction 153
2 Stochastic RT Equation 154
3 Statistically Inhomogeneous Model 155
4 Ensemble Averaged Radiance 156
5 Validation 158
6 Summary 159
Acknowledgments 160
References 160
Transport Theory for Optical Oceanography 162
1 Introduction 162
2 Aspects Requiring Special Computational Attention 167
3 Computational Programs 170
4 Computing Challenges 172
References 172
Perturbation Technique in 3D Cloud Optics: Theory and Results 175
1 Introduction 175
2 Definition of the Problem 175
3 Variational Principe to Derive the Radiative Transfer Equation 176
4 Perturbation 177
5 A Toy Example 178
References 180
Vegetation Canopy Re.ectance Modeling with Turbid Medium Radiative Transfer 182
1 Introduction 182
2 Description of the LCM2 Coupled Leaf/Canopy Radiative Transfer (RT) Model 189
3 LCM2 Demonstration 205
References 219
Rayspread: A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant Canopies 220
1 Canopy Radiation Transfer Fundamentals 221
2 The Rayspread Model 228
3 Conclusion 236
References 237
III High Energy Density Physics 241
Use of the Space Adaptive Algorithm to Solve 2D Problems of Photon Transport and Interaction with Medium 242
1 Introduction 242
2 Statement of a 2D Transport Equation 243
3 Description of 2D Transport Equation 245
Approximation Methods 245
4 Description of the Space Adaptive Computational 245
Algorithm for Transport Equation 245
5 Results of Computational Investigations 247
of the Adaptive Method Performance 247
6 Conclusion 258
References 261
Accurate and E.cient Radiation Transport in Optically Thick Media – by Means of the Symbolic Implicit Monte Carlo Method in the Di.erence Formulation* 262
1 Introduction 262
2 Radiation Transport in LTE 265
3 The Di.erence Formulation 268
4 Test Problems 275
5 Summary and Directions for Further Work 284
Acknowledgement 287
References 287
An Evaluation of the Di.erence Formulation for Photon Transport in a Two Level System* 290
1 Introduction 290
2 The Equations for Line Transport 292
3 Numerical Development 296
4 Numerical Results in the Gray Approximation 302
5 Concluding Remarks 311
References 312
Non-LTE Radiation Transport in High Radiation Plasmas 314
1 Introduction 314
2 Non-LTE Energetics 316
3 Radiation Transport 318
4 Test Case: Radiation-driven Cylinder 323
5 Linear Response Matrix 329
6 Summary 331
Acknowledgments 331
References 332
Finite-Difference Methods Implemented in SATURN Complex to Solve Multidimensional Time-Dependent Transport Problems 333
1 Multiple-Group Transport Equation Approximation 337
Implicit Solution of Non-Equilibrium Radiation Di.usion Including Reactive Heating Source in Material Energy Equation 359
1 Introduction 359
2 Mathematical Model 360
3 Numerical Methods 361
4 Results 365
5 Conclusions 374
Acknowledgements 375
References 375
IV Mathematics and Computer Science 377
Transport Approximations 378
Transport Approximations n Partially Diffusive Media 378
1 Introduction 378
2 Variational Formulation for Transport 380
3 Transport-Di.usion Coupling 394
4 Generalized Di.usion Models 398
Acknowledgments 402
A Local Second-Order Equation and Linear Corrector 403
References 404
High Order Finite Volume Nonlinear Schemes for the Boltzmann Transport Equation 406
1 Introduction 406
2 Background 408
3 Discretization of the 3-D Problem 410
4 Numerical Experiments 415
5 Discussion 425
Acknowledgements 426
References 426
Obtaining Identical Results on Varying Numbers of Processors in Domain Decomposed Particle Monte Carlo Simulations 428
1 Description of the Problem 428
2 Ensuring the Invariance of the Pseudo-Random Number Stream Employed by Each Particle 431
3 Ensuring That Addition is Commutative 432
4 Results 435
5 Conclusions 436
Appendix: Shave Algorithm 437
References 437
KM-Method of Iteration Convergence Acceleration for Solving a 2D Time-Dependent Multiple-Group Transport Equation and its Modi.cations 439
1 Statement of a 2D Transport Problem 439
2 KM-method 441
3 MKM-method 442
4 KM3-method 443
5 Test Computation Results 444
A Regularized Boltzmann Scattering Operator for Highly Forward Peaked Scattering 448
1 Introduction 448
2 Generalized Fermi Expansion 449
3 Regularized Collision Operator 452
4 Numerical Results 455
Conclusions 456
Acknowledgement 458
References 458
Implicit Riemann Solvers for the Pn Equations 459
1 Introduction 459
2 Pn Equations 460
3 Solving the Riemann Problem 461
4 High Resolution Flux from Linear Reconstruction 463
5 Time Integration 464
6 Implementation 465
7 Results 465
8 Conclusion 468
References 469
The Solution of the Time–Dependent Sn Equations on Parallel Architectures 470
1 Introduction 470
2 A Brief Review of The Implicit Discrete Ordinates 471
Discretization Method 471
3 Iterative Approaches 473
4 Speeding Up and Obtaining Convergence 476
5 Parallel Implementation 482
of the Full Linear System Approach 482
6 Parallel Scalability of a 2-D Test Problem 484
7 Conclusions and Future Directions 485
8 Acknowledgments 486
References 486
Different Algorithms of 2D Transport Equation Parallelization on Random Non-Orthogonal Grids 488
V Neutron Transport 498
Parallel Deterministic Neutron Transport with AMR 499
1 Introduction 499
2 Code Overview 500
3 Numerical Results 508
4 Future Work 511
References 512
An Overview of Neutron Transport Problems and Simulation Techniques 513
1 Introduction 513
2 Physical and Mathematical Basics 513
3 Basics of Stochastic and Deterministic Methods 521
4 Stochastic (Monte Carlo) Methods 522
5 Deterministic Methods 527
6 Automatic Variance Reduction (Hybrid) Methods 530
7 Discussion 531
References 533
Lecture Notes in Computational Science and Engineering 537

Erscheint lt. Verlag 17.2.2006
Reihe/Serie Lecture Notes in Computational Science and Engineering
Lecture Notes in Computational Science and Engineering
Zusatzinfo XVII, 539 p. 196 illus., 83 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik
Schlagworte algorithms • Approximation • astrophysics • Computational Physics • density • Diffusion • Dynamics • Energy • Hydrodynamics • Monte Carlo Method • Neutron • Optics • Physics • Plasma • Radiation • Transport
ISBN-10 3-540-28125-8 / 3540281258
ISBN-13 978-3-540-28125-2 / 9783540281252
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 23,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Der Wettstreit Dunkler Materie und Dunkler Energie: Ist das Universum …

von Adalbert W. A. Pauldrach; Tadziu Hoffmann

eBook Download (2022)
Springer Berlin Heidelberg (Verlag)
39,99
Von Hubble-, James-Webb- und anderen Großteleskopen bis zu …

von Arnold Hanslmeier

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
16,99