Separation Process Engineering - Phillip C. Wankat

Separation Process Engineering

Includes Mass Transfer Analysis: United States Edition
Buch | Hardcover
992 Seiten
2011 | 3rd edition
Prentice Hall (Verlag)
978-0-13-138227-5 (ISBN)
157,20 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
The Definitive, Fully Updated Guide to Separation Process Engineering–Now with a Thorough Introduction to Mass Transfer Analysis  



Separation Process Engineering, Third Edition, is the most comprehensive, accessible guide available on modern separation processes and the fundamentals of mass transfer. Phillip C. Wankat teaches each key concept through detailed, realistic examples using real data–including up-to-date simulation practice and new spreadsheet-based exercises.

 

Wankat thoroughly covers each of today’s leading approaches, including flash, column, and batch distillation; exact calculations and shortcut methods for multicomponent distillation; staged and packed column design; absorption; stripping; and more. In this edition, he also presents the latest design methods for liquid-liquid extraction. This edition contains the most detailed coverage available of membrane separations and of sorption separations (adsorption, chromatography, and ion exchange).

 

Updated with new techniques and references throughout, Separation Process Engineering, Third Edition, also contains more than 300 new homework problems, each tested in the author’s Purdue University classes.

 

Coverage includes



Modular, up-to-date process simulation examples and homework problems, based on Aspen Plus and easily adaptable to any simulator
Extensive new coverage of mass transfer and diffusion, including both Fickian and Maxwell-Stefan approaches
Detailed discussions of liquid-liquid extraction, including McCabe-Thiele, triangle and computer simulation analyses; mixer-settler design; Karr columns; and related mass transfer analyses
Thorough introductions to adsorption, chromatography, and ion exchange–designed to prepare students for advanced work in these areas
Complete coverage of membrane separations, including gas permeation, reverse osmosis, ultrafiltration, pervaporation, and key applications
A full chapter on economics and energy conservation in distillation
Excel spreadsheets offering additional practice with problems in distillation, diffusion, mass transfer, and membrane separation

 

Phillip C. Wankat is Clifton L. Lovell Distinguished Professor of Chemical Engineering and director of undergraduate degree programs at Purdue University’s School of Engineering Education. His current research interests include adsorption, large-scale chromatography, simulated moving bed systems, and distillation, as well as improvements in engineering education. He received the 2007 Distinguished Education Alumni Award of Distinction from Purdue’s College of Education, and the 2005 Shreve Prize in Chemical Engineering. With K. S. Knaebel, he contributed the Mass Transfer section to Perry’s Handbook of Chemical Engineering, Eighth Edition (McGraw-Hill, 2008).

Preface         xvii Acknowledgments         xix

About the Author         xxi

Nomenclature         xxiii





 

Chapter 1: Introduction to Separation Process Engineering         1

1.1.   Importance of Separations   1

1.2.   Concept of Equilibrium   2

1.3.   Mass Transfer   4

1.4.   Problem-Solving Methods   5

1.5.   Prerequisite Material   7

1.6.   Other Resources on Separation Process Engineering   7

1.7.   Summary–Objectives   10

References   10

Homework   11

 

Chapter 2: Flash Distillation         13

2.1.   Basic Method of Flash Distillation   13

2.2.   Form and Sources of Equilibrium Data   15

2.3.   Graphical Representation of Binary VLE   18

2.4.   Binary Flash Distillation   22

2.5.   Multicomponent VLE   30

2.6.   Multicomponent Flash Distillation 34

2.7.   Simultaneous Multicomponent Convergence   42

2.8.   Three-Phase Flash Calculations   47

2.9.   Size Calculation   48

2.10. Utilizing Existing Flash Drums   53

2.11. Summary–Objectives   54

References   54

Homework   56

Appendix A. Computer Simulation of Flash Distillation   67

Appendix B. Spreadsheets for Flash Distillation   73

 

Chapter 3: Introduction to Column Distillation        79

3.1.   Developing a Distillation Cascade   79

3.2.   Distillation Equipment   86

3.3.   Specifications   88

3.4.   External Column Balances   91

3.5.   Summary–Objectives   95

References   95

Homework   95

 

Chapter 4: Column Distillation: Internal Stage-by-Stage Balances         101

4.1.   Internal Balances   101

4.2.   Binary Stage-by-Stage Solution Methods   105

4.3.   Introduction to the McCabe-Thiele Method   112

4.4.   Feed Line   116

4.5.   Complete McCabe-Thiele Method   124

4.6.   Profiles for Binary Distillation   127

4.7.   Open Steam Heating   129

4.8.   General McCabe-Thiele Analysis Procedure   134

4.9.   Other Distillation Column Situations   140

4.10. Limiting Operating Conditions   146

4.11. Efficiencies   148

4.12. Simulation Problems   150

4.13. New Uses for Old Columns   151

4.14. Subcooled Reflux and Superheated Boilup   153

4.15. Comparisons between Analytical and Graphical Methods   155

4.16. Summary–Objectives   156

References   158

Homework   159

Appendix A. Computer Simulations for Binary Distillation   173

Appendix B. Spreadsheets for Binary Binary Distillation   177

 

Chapter 5: Introduction to Multicomponent Distillation         183

5.1.   Calculational Difficulties   183

5.2.   Stage-By-Stage Calculations for Constant Molal Overflow and Constant Relative Volatility   189

5.3.   Profiles for Multicomponent Distillation   193

5.4.   Bubble-Point and Dew-Point Equilibrium Calculations   198

5.3.   Summary–Objectives   203

References   203

Homework   203

Appendix. Spreadsheet Calculations for Ternary Distillation with Constant Relative Volatility   209

 

Chapter 6: Exact Calculation Procedures for Multicomponent Distillation         215

6.1.   Introduction to Matrix Solution for Multicomponent Distillation   215

6.2.   Component Mass Balances in Matrix Form   217

6.3.   Initial Guesses for Flow Rates and Temperatures   220

6.4.   Temperature Convergence   221

6.5.   Energy Balances in Matrix Form   224

6.6.   Introduction to Naphtali-Sandholm Simultaneous Convergence Method   227

6.7.   Discussion   229

6.8.   Summary–Objectives   230

References   230

Homework   230

Appendix. Computer Simulations for Multicomponent Column Distillation   237

 

Chapter 7: Approximate Shortcut Methods for Multicomponent Distillation          243

7.1.   Total Reflux: Fenske Equation   243

7.2.   Minimum Reflux: Underwood Equations   248

7.3.   Gilliland Correlation for Number of Stages at Finite Reflux Ratio   253

7.4.   Summary–Objectives   257

References   257

Homework   258

 

Chapter 8: Introduction to Complex Distillation Methods          265

8.1.   Breaking Azeotropes with Other Separators   265

8.2.   Binary Heterogeneous Azeotropic Distillation Processes   266

8.3.   Steam Distillation   275

8.4.   Two-Pressure Distillation Processes   279

8.5.   Complex Ternary Distillation Systems   281

8.6.   Extractive Distillation   290

8.7.   Azeotropic Distillation with Added Solvent   296

8.8.   Distillation with Chemical Reaction   300

8.9.   Summary–Objectives   303

References   304

Homework   305

Appendix. Simulation of Complex Distillation Systems   321

 

Chapter 9: Batch Distillation          329

9.1.   Binary Batch Distillation: Rayleigh Equation   331

9.2.   Simple Binary Batch Distillation   332

9.3.   Constant-Level Batch Distillation   336

9.4.   Batch Steam Distillation   337

9.5.   Multistage Batch Distillation   340

9.6.   Operating Time   344

9.7.   Summary–Objectives   346

References   347

Homework   347

 

Chapter 10: Staged and Packed Column Design         357

10.1.   Staged Column Equipment Description   357

10.2.   Tray Efficiencies   365

10.3.   Column Diameter Calculations   370

10.4.   Balancing Calculated Diameters   376

10.5.   Sieve Tray Layout and Tray Hydraulics   378

10.6.   Valve Tray Design   386

10.7.   Introduction to Packed Column Design   388

10.8.   Packed Column Internals   388

10.9.   Height of Packing: HETP Method   390

10.10. Packed Column Flooding and Diameter Calculation   392

10.11. Economic Trade-Offs for Packed Columns   400

10.12. Choice of Column Type   401

10.13. Summary–Objectives   404

References   405

Homework   408

Appendix. Tray And Downcomer Design with Computer Simulator   416

 

Chapter 11: Economics and Energy Conservation in Distillation         419

11.1.   Distillation Costs   419

11.2.   Operating Effects on Costs   425

11.3.   Changes in Plant Operating Rates   432

11.4.   Energy Conservation in Distillation   433

11.5.   Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation   437

11.6.   Synthesis of Distillation Systems for Nonideal Ternary Systems   442

11.7.   Summary–Objectives   447

References   447

Homework   449

 

Chapter 12: Absorption and Stripping         455

12.1.   Absorption and Stripping Equilibria   457

12.2.   McCabe-Thiele Solution for Dilute Absorption   459

12.3.   Stripping Analysis for Dilute Systems   462

12.4.   Analytical Solution for Dilute Systems: Kremser Equation   463

12.5.   Efficiencies   469

12.6.   McCabe-Thiele Analysis for More Concentrated Systems   470

12.7.   Column Diameter   474

12.8.   Dilute Multisolute Absorbers and Strippers   476

12.9.   Matrix Solution for Concentrated Absorbers and Strippers   478

12.10. Irreversible Absorption and Co-Current Cascades   482

12.11. Summary–Objectives   484

References   484

Homework   485

Appendix. Computer Simulations for Absorption and Stripping   494

 

Chapter 13: Liquid-Liquid Extraction          499

13.1.   Extraction Processes and Equipment   499

13.2.   Countercurrent Extraction   503

13.3.   Dilute Fractional Extraction   511

13.4.   Immiscible Single-Stage and Cross-Flow Extraction   515

13.5.   Concentrated Immiscible Extraction   519

13.6.   Immiscible Batch Extraction   520

13.7.   Extraction Equilibrium for Partially Miscible Ternary Systems   522

13.8.   Mixing Calculations and the Lever-Arm Rule   524

13.9.   Partially Miscible Single-Stage and Cross-Flow Systems   528

13.10. Countercurrent Extraction Cascades for Partially Miscible Systems   531

13.11. Relationship between McCabe-Thiele and Triangular Diagrams for Partially Miscible Systems   539

13.12. Minimum Solvent Rate for Partially Miscible Systems   540

13.13. Extraction Computer Simulations   542

13.14. Design of Mixer-Settlers   543

13.15. Introduction to Design of Reciprocating-Plate (Karr) Columns   557

13.16. Summary–Objectives   558

References   559

Homework   561

Appendix. Computer Simulation of Extraction   572

 

Chapter 14: Washing, Leaching, and Supercritical Extraction         575

14.1.   Generalized McCabe-Thiele and Kremser Procedures   575

14.2.   Washing   576

14.3.   Leaching with Constant Flow Rates   582

14.4.   Leaching with Variable Flow Rates   584

14.5.   Supercritical Fluid Extraction   587

14.6.   Application to Other Separations   590

14.7.   Summary–Objectives   590

References   590

Homework   591

 

Chapter 15: Introduction to Diffusion and Mass Transfer         599

15.1.   Molecular Movement Leads to Mass Transfer   600

15.2.   Fickian Model of Diffusivity   602

15.3.   Values and Correlations for Fickian Binary Diffusivities   616

15.4.   Linear Driving-Force Model of Mass Transfer for Binary Systems   622

15.5.   Correlations for Mass-Transfer Coefficients   628

15.6.   Difficulties with Fickian Diffusion Model   640

15.7.   Maxwell-Stefan Model of Diffusion and Mass Transfer   641

15.8.   Advantages and Disadvantages of Different Diffusion and Mass-Transfer Models   655

15.9.   Summary—Objectives   655

References   656

Homework   657

Appendix. Spreadsheet for Example 15-6   661

 

Chapter 16: Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction         663

16.1.   HTU-NTU Analysis of Packed Distillation Columns   663

16.2.   Relationship of HETP and HTU   673

16.3.   Mass Transfer Correlations for Packed Towers   675

16.4.   HTU-NTU Analysis of Absorbers and Strippers   683

16.5.   HTU-NTU Analysis of Co-Current Absorbers   688

16.6.   Prediction of Distillation Tray Efficiency   690

16.7.   Mass-Transfer Analysis of Extraction   693

16.8.   Rate-Based Analysis of Distillation   708

16.9.   Summary–Objectives   712

References   713

Homework   714

Appendix. Computer Rate-Based Simulation of Distillation   721

 

Chapter 17: Introduction to Membrane Separation Processes         725

17.1.   Membrane Separation Equipment   727

17.2.   Membrane Concepts   731

17.3.   Gas Permeation   733

17.4.   Reverse Osmosis   749

17.5.   Ultrafiltration (UF)   765

17.6.   Pervaporation (PERVAP)   771

17.7.   Bulk Flow Pattern Effects   781

17.8.   Summary–Objectives   788

References   788

Homework   790

Appendix. Spreadsheets for Flow Pattern Calculations for Gas Permeation   798

 

Chapter 18: Introduction to Adsorption, Chromatography, and Ion Exchange          805

18.1.   Sorbents and Sorption Equilibrium   806

18.2.   Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography   819

18.3.   Solute Movement Analysis for Linear Systems: Thermal and Pressure Swing Adsorption and Simulated Moving Beds   828

18.4.   Nonlinear Solute Movement Analysis   851

18.6.   Mass and Energy Transfer in Packed Beds   870

18.7.   Mass Transfer Solutions for Linear Systems   877

18.8.   LUB Approach for Nonlinear Systems   886

18.9.   Checklist for Practical Design and Operation   890

18.10. Summary–Objectives   892

References   892

Homework   895

Appendix. Introduction to the Aspen Chromatography Simulator   909

 



Appendix A: Aspen Plus Troubleshooting Guide for Separations            915

Appendix B: Instructions for Fitting VLE and LLE Data with Aspen Plus           919

Appendix C: Unit Conversions and Physical Constants           921

Appendix D:Data Locations           923

Answers to Selected Problems           931

Index         939

Erscheint lt. Verlag 17.11.2011
Verlagsort Upper Saddle River
Sprache englisch
Maße 181 x 238 mm
Gewicht 1342 g
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-13-138227-6 / 0131382276
ISBN-13 978-0-13-138227-5 / 9780131382275
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen, technische Anwendungen, Rohstoffe, Analytik und …

von Peter Kurzweil

Buch | Softcover (2023)
Springer Vieweg (Verlag)
39,99
erneuerbare Energien und Speichertechnologien für die Energiewende

von Jürgen Karl

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95