High-Dimensional Data Analysis in Cancer Research -

High-Dimensional Data Analysis in Cancer Research

Xiaochun Li, Ronghui Xu (Herausgeber)

Buch | Softcover
392 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2009
Springer-Verlag New York Inc.
978-1-4419-2414-8 (ISBN)
106,99 inkl. MwSt
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.

On the Role and Potential of High-Dimensional Biologic Data in Cancer Research.- Variable selection in regression - estimation, prediction,sparsity, inference.- Multivariate Nonparametric Regression.- Risk Estimation.- Tree-Based Methods.- Support Vector Machine Classification for High Dimensional Microarray Data Analysis, With Applications in Cancer Research.- Bayesian Approaches: Nonparametric Bayesian Analysis of Gene Expression Data.

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Applied Bioinformatics and Biostatistics in Cancer Research
Zusatzinfo 6 Illustrations, color; 17 Illustrations, black and white; VIII, 392 p. 23 illus., 6 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Laboratoriumsmedizin
Medizin / Pharmazie Medizinische Fachgebiete Mikrobiologie / Infektologie / Reisemedizin
Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Studium 2. Studienabschnitt (Klinik) Humangenetik
Naturwissenschaften Biologie Zoologie
ISBN-10 1-4419-2414-0 / 1441924140
ISBN-13 978-1-4419-2414-8 / 9781441924148
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

Buch (2023)
Thieme (Verlag)
110,00
Lehrbuch

von Erwin-Josef Speckmann; Jürgen Hescheler …

Buch | Hardcover (2024)
Urban & Fischer in Elsevier (Verlag)
89,00