High-Dimensional Data Analysis in Cancer Research

Xiaochun Li, Ronghui Xu (Herausgeber)

Buch | Hardcover
392 Seiten
2008 | 1st Edition. 2nd Printing. 2008
Springer-Verlag New York Inc.
978-0-387-69763-5 (ISBN)

Lese- und Medienproben

High-Dimensional Data Analysis in Cancer Research -
160,49 inkl. MwSt
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.

On the Role and Potential of High-Dimensional Biologic Data in Cancer Research.- Variable selection in regression - estimation, prediction,sparsity, inference.- Multivariate Nonparametric Regression.- Risk Estimation.- Tree-Based Methods.- Support Vector Machine Classification for High Dimensional Microarray Data Analysis, With Applications in Cancer Research.- Bayesian Approaches: Nonparametric Bayesian Analysis of Gene Expression Data.

Reihe/Serie Applied Bioinformatics and Biostatistics in Cancer Research
Zusatzinfo 6 Illustrations, color; 17 Illustrations, black and white; VIII, 392 p. 23 illus., 6 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Medizin / Pharmazie Studium
ISBN-10 0-387-69763-2 / 0387697632
ISBN-13 978-0-387-69763-5 / 9780387697635
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hannes Leischner

Buch | Softcover (2023)
Urban & Fischer in Elsevier (Verlag)
27,00
Resilienz innovativ stärken : ein Praxishandbuch

von Christa Diegelmann; Margarete Isermann; Tanja Zimmermann

Buch | Softcover (2023)
Kohlhammer (Verlag)
36,00