Für diesen Artikel ist leider kein Bild verfügbar.

Membrane Technology – In the Chemical Industry

S Pereira Nunes (Autor)

Software / Digital Media
354 Seiten
2006
Wiley-VCH Verlag GmbH (Hersteller)
978-3-527-60878-2 (ISBN)
228,80 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Developed from a laboratory technique to a commercial separation technology, membrane technology has widespread use in the chemical industry. This book outlines the applications of membranes in the chemical industry, reviews the membranes and membrane processes for the field, and discusses the potential of this technology in chemical processes.
Membrane technology is a clean and energy saving alternative to traditional/conventional processes. Developed from a useful laboratory technique to a commercial separation technology, today it has widespread and rapidly expanding use in the chemical industry. It has established applications in areas such as hydrogen separation and recovery of organic vapors from process gas streams, and selective transport of organic solvents, and it is opening new perspectives for catalytic conversion in membrane reactors. Membrane technology provides a unique solution for industrial waste treatment and for controlled production of valuable chemicals. This book outlines several established applications of membranes in the chemical industry, reviews the available membranes and membrane processes for the field, and discusses the huge potential of this technology in chemical processes. Each chapter has been written by an international leading expert with extensive industrial experience in the field.

S. P. Nunes is currently head of Polymer Technology at GKSS Research Center Geesthacht in Germany. She has been working on the development of polymeric materials and membranes for different applications for over 20 years, with over 65 papers in international journals and 100 contributions to congresses. In the last four years she has dedicated her time to the membrane development for fuel cells, coordinating German and European projects in the field. Prior to this, she was Associate Professor at the University of Campinas, Brazil, a researcher at Pirelli, and Humboldt fellow at the University of Mainz, Germany. K.-V. Peinemann is currently Senior Scientist at GKSS Research Center Geesthacht in Germany and has worked in the field of membrane science and technology for 25 years. He has organized numerous international workshops on membrane formation and has been lecturing since 1995 at the University of Hanover. From 2002 to 2004, Professor Peinemann served as President of the European Membrane Society and is co-founder of the membrane company GMT Membrantechnik in Rheinfelden, Germany. He has published some 80 papers in international journals and holds 15 membrane-related patents.

Part I: Membrane Materials and Membrane Preparation (S. P. Nunes and K.-V. Peinemann).1 Introduction.2 Membrane Market.3 Membrane Preparation.3.1 Phase Inversion.4 Presently Available Membranes for Liquid Separation.4.1 Membranes for Reverse Osmosis.4.2 Membranes for Nanofiltration.4.2.1 Solvent-resistant Membranes for Nanofiltration.4.2.2 NF Membranes Stable in Extreme pH Conditions.4.3 Membranes for Ultrafiltration.4.3.1 Polysulfone and Polyethersulfone.4.3.2 Poly(vinylidene fluoride).4.3.3 Polyetherimide.4.3.4 Polyacrylonitrile.4.3.5 Cellulose.4.3.6 Solvent-resistant Membranes for Ultrafiltration.4.4 Membranes for Microfiltration.4.4.1 Polypropylene and Polyethylene.4.4.2 Poly(tetrafluorethylene).4.4.3 Polycarbonate and Poly(ethylene terephthalate).5 Surface Modification of Membranes.5.1 Chemical Oxidation.5.2 Plasma Treatment.5.3 Classical Organic Reactions.5.4 Polymer Grafting.6 Membranes for Fuel Cells.6.1 Perfluorinated Membranes.6.2 Nonfluorinated Membranes.6.3 Polymer Membranes for High Temperatures.6.4 Organic-Inorganic Membranes for Fuel Cells.7 Gas Separation with Membranes.7.1 Introduction.7.2 Materials and Transport Mechanisms.7.2.1 Organic Polymers.7.2.2 Background.7.2.3 Polymers for Commercial Gas-separation Membranes.7.2.4 Ultrahigh Free Volume Polymers.7.2.5 Inorganic Materials for Gas-separation Membranes.7.2.6 Carbon Membranes.7.2.7 Perovskite-type Oxide Membranes for Air Separation.7.2.8 Mixed-matrix Membranes.7.3 Basic Process Design.Acknowledgments.References.Part II: Current Application and Perspectives.1 The Separation of Organic Vapors from Gas Streams by Means of Membranes (K. Ohlrogge and K. Sturken).Summary.1.1 Introduction.1.2 Historical Background.1.3 Membranes for Organic Vapor Separation.1.3.1 Principles.1.3.2 Selectivity.1.3.3 Temperature and Pressure.1.3.4 Membrane Modules.1.4 Applications.1.4.1 Design Criteria.1.4.2 Off-gas and Process Gas Treatment.1.4.2.1 Gasoline Vapor Recovery.1.4.2.2 Polyolefin Production Processes.1.5 Applications at the Threshold of Commercialization.1.5.1 Emission Control at Petrol Stations.1.5.2 Natural Gas Treatment.1.5.3 Hydrogen/Hydrocarbon Separation.1.6 Conclusions and Outlook.References.2 Gas-separation Membrane Applications (D. J. Stookey).2.1 Introduction.2.2 Membrane Application Development.2.2.1 Membrane Selection.2.2.2 Membrane Form.2.2.3 Membrane Module Geometry.2.2.4 Compatible Sealing Materials.2.2.5 Module Manufacture.2.2.6 Pilot or Field Demonstration.2.2.7 Process Design.2.2.8 Membrane System.2.2.9 Beta Site.2.2.10 Cost/Performance.2.3 Commercial Gas-separation Membrane Applications.2.3.1 Hydrogen Separations.2.3.2 Helium Separations.2.3.3 Nitrogen Generation.2.3.4 Acid Gas-Separations.2.3.5 Gas Dehydration.2.4 Developing Membrane Applications.2.4.1 Oxygen and Oxygen-enriched Air.2.4.2 Nitrogen Rejection from Natural Gas.2.4.3 Nitrogen-enriched Air (NEA).References.3 State-of-the-Art of Pervaporation Processes in the Chemical Industry (H.E. A. Bruschke).3.1 Introduction.3.2 Principles and Calculations.3.2.1 Definitions.3.2.2 Calculation.3.2.3 Permeate-side Conditions.3.2.4 Transport Resistances.3.2.5 Principles of Pervaporation.3.2.6 Principles of Vapor Permeation.3.3 Membranes.3.3.1 Characterization of Membranes.3.4 Modules.3.4.1 Plate Modules.3.4.2 Spiral-wound Modules.3.4.3 "Cushion" Module.3.4.4 Tubular Modules.3.4.5 Other Modules.3.5 Applications.3.5.1 Organophilic Membranes.3.5.2 Hydrophilic Membranes.3.5.2.1 Pervaporation.3.5.2.2 Vapor Permeation.3.5.3 Removal of Water from Reaction Mixtures.3.5.4 Organic-Organic Separation.3.6 Conclusion.References.4 Organic Solvent Nanofiltration (A. G. Livingston, L. G. Peeva and P. Silva).Summary.4.1 Current Applications and Potential.4.2 Theoretical Background to Transport Processes.4.2.1 Pore-flow Model.4.2.2 Solution-Diffusion Model.4.2.3 Models Combining Membrane Transport with the Film Theory of Mass Transfer.4.3 Transport of Solvent Mixtures.4.3.1 Experimental.4.3.1.1 Filtration Equipment and Experimental Measurements.4.3.2 Results for Binary Solvent Fluxes.4.4 Concentration Polarization and Osmotic Pressure.4.4.1 Experimental.4.4.2 Results for Concentration Polarization and Osmotic Pressure.4.4.2.1 Parameter Estimation.4.4.2.2 Nanofiltration of Docosane-Toluene Solutions.4.4.2.3 Nanofiltration of TOABr-Toluene Solutions.4.5 Conclusions.Nomenclature.Greek letters.Subscripts.References.5 Industrial Membrane Reactors (M.F. Kemmere and J.T. F. Keurentjes).5.1 Introduction.5.2 Membrane Functions in Reactors.5.2.1 Controlled Introduction of Reactants.5.2.2 Separation of Products.5.2.3 Catalyst Retention.5.3 Applications.5.3.1 Pervaporation-assisted Esterification.5.3.2 Large-scale Dehydrogenations with Inorganic Membranes.5.3.3 OTM Syngas Process.5.3.4 Membrane Recycle Reactor for the Acylase Process.5.3.5 Membrane Extraction Integrated Systems.5.4 Concluding Remarks and Outlook to the Future.References.6 Electromembrane Processes (T. A. Davis, V. D. Grebenyuk and O. Grebenyuk).6.1 Ion-exchange Membranes.6.2 Ion-exchange Membrane Properties.6.2.1 Swelling.6.2.2 Electrical Conductivity.6.2.3 Electrochemical Performance.6.2.4 Diffusion Permeability.6.2.5 Hydraulic Permeability.6.2.6 Osmotic Permeability.6.2.7 Electroosmotic Permeability.6.2.8 Polarization.6.2.9 Chemical and Radiation Stability.6.3 Electromembrane Process Application.6.3.1 Electrodialysis.6.3.2 Electrodeionization.6.3.3 Electrochemical Regeneration of Ion-exchange Resin.6.3.4 Synthesis of New Substances without Electrode Reaction Participation: Bipolar-membrane Applications.6.3.5 Isolation of Chemical Substances from Dilute Solutions.6.3.6 Electrodialysis Applications for Chemical-solution Desalination.6.4 Electrochemical Processing with Membranes.6.4.1 Electrochemistry.6.4.2 Chlor-alkali Industry.6.4.3 Perfluorinated Membranes.6.4.4 Process Conditions.6.4.5 Zero-gap Electrode Configurations.6.4.6 Other Electrolytic Processes.6.4.7 Fuel Cells.6.4.8 Electroorganic Synthesis.6.4.9 Electrochemical Oxidation of Organic Wastes.Acknowledgments.List of Symbols.References.7 Membrane Technology in the Chemical Industry: Future Directions (R.W. Baker).7.1 The Past: Basis for Current Membrane Technology.7.1.1 Ultrathin Membranes.7.1.2 Membrane Modules.7.1.3 Membrane Selectivity.7.2 The Present: Current Status and Potential of the Membrane Industry.7.2.1 Reverse Osmosis.7.2.2 Ultrafiltration.7.2.3 Microfiltration.7.2.4 Gas Separation.7.2.4.1 Refinery Hydrogen Applications.7.2.4.2 Nitrogen (and Oxygen) Separation from Air.7.2.4.3 Natural Gas Separations.7.2.4.4 Vapor/Gas, Vapor/Vapor Separations.7.2.5 Pervaporation.7.2.6 Ion-conducting Membranes.7.3 The Future: Predictions for 2020.References.Subject Index.

Erscheint lt. Verlag 28.8.2006
Verlagsort Weinheim
Sprache englisch
Maße 185 x 246 mm
Gewicht 804 g
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik
ISBN-10 3-527-60878-8 / 3527608788
ISBN-13 978-3-527-60878-2 / 9783527608782
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich