The Mathematical Career of Pierre de Fermat, 1601-1665 - Michael Sean Mahoney

The Mathematical Career of Pierre de Fermat, 1601-1665

Second Edition
Buch | Hardcover
419 Seiten
1973 | 2nd Revised edition
Princeton University Press (Verlag)
978-0-691-08119-9 (ISBN)
11,60 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Hailed as one of the greatest mathematical results of the twentieth century, the recent proof of Fermat's Last Theorem by Andrew Wiles brought to public attention the enigmatic problem-solver Pierre de Fermat, who centuries ago stated his famous conjecture in a margin of a book, writing that he did not have enough room to show his "truly marvelous demonstration." Along with formulating this proposition--xn+yn=zn has no rational solution for n > 2--Fermat, an inventor of analytic geometry, also laid the foundations of differential and integral calculus, established, together with Pascal, the conceptual guidelines of the theory of probability, and created modern number theory. In one of the first full-length investigations of Fermat's life and work, Michael Sean Mahoney provides rare insight into the mathematical genius of a hobbyist who never sought to publish his work, yet who ranked with his contemporaries Pascal and Descartes in shaping the course of modern mathematics.

Michael Sean Mahoney is Professor of History at Princeton University.

Zusatzinfo Illustrations
Verlagsort New Jersey
Sprache englisch
Maße 197 x 254 mm
Themenwelt Literatur Biografien / Erfahrungsberichte
Naturwissenschaften
ISBN-10 0-691-08119-0 / 0691081190
ISBN-13 978-0-691-08119-9 / 9780691081199
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Caspar David Friedrichs Reise durch die Zeiten

von Florian Illies

Buch | Hardcover (2023)
S. Fischer (Verlag)
25,00
Geschichte, Positionen, Perspektiven

von Muriel Asseburg; Jan Busse

Buch | Softcover (2024)
C.H.Beck (Verlag)
12,00
meine Geschichte

von Alexej Nawalny

Buch | Hardcover (2024)
S. Fischer (Verlag)
28,00