Nano-Optics
Springer Berlin (Verlag)
978-3-642-07527-8 (ISBN)
When a photon meets a nanostructure, many interesting phenomena occur. This book aims at developing the theories and the applications of photon interactions with nanostructures. The contributors were all participants in the well-known Japanese national research project, "Near-Field Nano-Optics", which ran from 1997 to 2000. The book covers a wide range of disciplines in nano-optics, including the theoretical development of imaging-contrast mechanisms as a result of photon and nanomatter interactions, and discussions on different near-field nanoprobes. Applications of nano-optics to sensing, imaging, analysis, and the fabrication of nanostructures, such as molecules and quantum devices, are also discussed, with a collection of experimental examples.
Motoiochi Ohtsu was appointed a Research Associate, an Associate professor, a Professor at the Tokyo Institute of Technology. From 1986 to 1987, while on leave from the Tokyo Institute of Technology, he joined the Crawford Hill Laboratory, AT&T Bell Laboratories, Holmdel, NJ. In 2004, he moved to the University of Tokyo as a professor. He has written over 417 papers and received 87 patents. He is the author, co-author, and editor of 55 books, including 22 in English. In 2000, he was appointed as the President of the Tokyo Chapter, LEOS, IEEE. From 2000, He is an executive director of the Japan Society of Applied Physics. His main field of interests is nanophotonics.He is a Fellow of the Optical Society of America, and a Fellow of the Japan Society of Applied Physics. He is also a Tandem Member of the Science Council of Japan. Awards: 14 prizes from academic institutions, including the Distinguished Achievement Award from the Institute of Electronics, Information and Communication Engineering of Japan in 2007, the Julius Springer Prize for Applied Physics in 2009.
Masahiro Irie received his B.S. and M.S. degrees from Kyoto University and his Ph.D. degree in radiation chemistry from Osaka University. He started his research on photochemistry at Hokkaido University in 1970 and went on to Osaka University. In 1988 he was appointed to Professor at Kyushu University, where he initiated the study of photochromic diarylethene derivatives. He is currently interested in developing single-crystalline photochromism and single-molecule photochemistry using diarylethene derivatives.
1 Quantum Theory for Near-Field Nano-Optics.- 1.1 Resonant Near-Field Optics.- 1.2 Quantization of Evanescent Waves and Optical Near-Rield Interaction of Atoms.- 1.3 Quantum Mechanical Aspects of Optical Near-Field Problems.- 2 Electromagnetism Theory and Analysis for Near-Field Nano-Optics.- 2.1 Finite-Difference Time-Domain Analysis of a Near-Field Microscope System.- 2.2 Reconstruction of an Optical Image from NSOM Data.- 2.3 Radiation Force Exerted near a Nano-Aperture.- References.- 3 High-Resolution and High-Throughput Probes.- 3.1 Excitation of a HE-Plasmon Mode.- 3.2 Multiple-Tapered Probes.- References.- 4 Apertureless Near-Field Probes.- 4.1 Local Plasmon in a Metallic Nanoparticle.- 4.2 Laser-Trapping of a Metallic Particle for a Near-Field Microscope Probe.- 4.3 Near-Field Enhancement at a Metallic Probe.- 4.4 Scattering Near-Field Optical Microscope with a Microcavity.- References.- 5 Integrated and Functional Probes.- 5.1 Micromachined Probes.- 5.2 Light Detection from Force.- 5.3 High Efficiency Light Transmission Through a Nano-Waveguide.- References.- 6 High-Density Optical Memory and Ultrafine Photofabrication.- 6.1 Photochromic Memory Media.- 6.2 Near-Field Optical Memory.- 6.3 Future Prospects for Near-Field Optical Memory.- 6.4 Nanofabrication: Chemical Vapor Deposition.- 6.5 Nanofabrication: Organic Film.- References.- 7 Near-Field Imaging of Molecules and Thin Films.- 7.1 Near-Field Imaging of Molecules and Thin Films.- 7.2 Two-Dimensional Morphology of Ultrathin Polymer Films.- 7.3 Observation of Polyethylene (PE) Crystals.- 7.4 Preparation of Micrometer-Sized Chromophore Aggregates.- 7.5 Application to Electrochemical Research.- 7.6 Second-Harmonic Generation in Near-Field Optics.- References.- 8 Near-Field Microscopy for Biomolecular Systems.-8.1 Near-Field Imaging of Human Chromosomes and Single DNA Molecules.- 8.2 Imaging of Biological Molecules.- 8.3 Cell and Cellular Functions.- References.- 9 Near-Field Imaging of Quantum Devices and Photonic Structures.- 9.1 Spectroscopy of Quantum Devices and Structures.- 9.2 Observation of Polysilane by Near-Field Scanning Optical Microscope in the Ultraviolet (UV) Region.- 9.3 Near-Field Photon Tunneling.- References.- 10 Other Imaging and Applications.- 10.1 Birefringent Imaging with an Illumination-Mode Near-Field Scanning Optical Microscope.- 10.2 Plain-Type Low-Temperature NSOM System.- 10.3 STM-Induced Luminescence.- 10.4 Energy Modulation of Electrons with Evanescent Waves.- 10.5 Manipulation of Particles by Photon Force.- References.
Erscheint lt. Verlag | 22.9.2011 |
---|---|
Reihe/Serie | Springer Series in Optical Sciences |
Zusatzinfo | XV, 324 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 521 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Optik |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Apertur • Applied Optics • Biophysics • Chemistry • Imaging • Metall • Microscopy • Nanoscience • nanostructure • Nanotechnologie • Near-field optics • Optics • Quantum Physics • Surface • Surface Science |
ISBN-10 | 3-642-07527-4 / 3642075274 |
ISBN-13 | 978-3-642-07527-8 / 9783642075278 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich