Algebraic Integrability, Painlevé Geometry and Lie Algebras
Springer Berlin (Verlag)
978-3-642-06128-8 (ISBN)
1 Introduction.- 2 Lie Algebras.- 3 Poisson Manifolds.- 4 Integrable Systems on Poisson Manifolds.- 5 The Geometry of Abelian Varieties.- 6 A.c.i. Systems.- 7 Weight Homogeneous A.c.i. Systems.- 8 Integrable Geodesic Flow on SO(4).- 9 Periodic Toda Lattices Associated to Cartan Matrices.- 10 Integrable Spinning Tops.- References.
From the reviews of the first edition:
"The aim of this book is to explain 'how algebraic geometry, Lie theory and Painlevé analysis can be used to explicitly solve integrable differential equations'. ... One of the main advantages of this book is that the authors ... succeeded to present the material in a self-contained manner with numerous examples. As a result it can be also used as a reference book for many subjects in mathematics. In summary ... a very good book which covers many interesting subjects in modern mathematical physics." (Vladimir Mangazeev, The Australian Mathematical Society Gazette, Vol. 33 (4), 2006)
"This is an extensive volume devoted to the integrability of nonlinear Hamiltonian differential equations. The book is designed as a teaching textbook and aims at a wide readership of mathematicians and physicists, graduate students and professionals. ... The book provides many useful tools and techniques in the field of completely integrable systems. It is a valuable source for graduate students and researchers who like to enter the integrability theory or to learn fascinating aspects of integrable geometry of nonlinear differential equations." (Ma Wen-Xiu, Zentralblatt MATH, Vol. 1083, 2006)
Erscheint lt. Verlag | 18.12.2010 |
---|---|
Reihe/Serie | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
Zusatzinfo | XII, 484 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 742 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie | |
Schlagworte | Abelian varieties • Algebra • curve theory • Integrable Systems • Lie Theory • Mathematical Physics |
ISBN-10 | 3-642-06128-1 / 3642061281 |
ISBN-13 | 978-3-642-06128-8 / 9783642061288 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich