Mathematical Implications of Einstein-Weyl Causality - Hans Jürgen Borchers, Rathindra Nath Sen

Mathematical Implications of Einstein-Weyl Causality

Buch | Softcover
XII, 190 Seiten
2010 | 1. Softcover reprint of hardcover 1st ed. 2006
Springer Berlin (Verlag)
978-3-642-07233-8 (ISBN)
53,49 inkl. MwSt

The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics.

Geometrical Structures on Space-Time.- Light Rays and Light Cones.- Local Structure and Topology.- Homogeneity Properties.- Ordered Spaces and Complete Uniformizability.- Spaces with Complete Light Rays.- Consequences of Order Completeness.- The Cushion Problem.- Related Works.- Concluding Remarks.- Erratum to: Geometrical Structures on Space-Time.- Erratum to: Light Rays and Light Cones.- Erratum to: Local Structure and Topology.- Erratum to: Ordered Spaces and Complete Uniformizability.- Erratum to: Spaces with Complete Light Rays.- Erratum to: Consequences of Order Completeness.- Erratum.

From the reviews:

"The casual structure of space-times can be described by means of two notions of precedence, namely chronological and casual precedence; one can then abstract these two notions, and the relationship between them, and consider casual spaces in general. ... This volume will be of interest in particular to workers in casual analysis, and more generally to those with an interest in the fundamental structure of space-time." (Robert J. Low, Mathematical Reviews, 2007 k)

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Lecture Notes in Physics
Zusatzinfo XII, 190 p. 37 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 316 g
Themenwelt Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Causality • differentiable manifolds • manifold • Mathematical Physics • Relativity • Topological Spaces
ISBN-10 3-642-07233-X / 364207233X
ISBN-13 978-3-642-07233-8 / 9783642072338
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch

von Wilhelm Kulisch; Regine Freudenstein

Buch | Softcover (2024)
Wiley-VCH (Verlag)
39,99
für Studierende der Naturwissenschaften und Technik

von Paul A. Tipler; Peter Kersten; Gene Mosca

Buch | Hardcover (2024)
Springer Spektrum (Verlag)
79,99