Finite-Dimensional Vector Spaces
Springer-Verlag New York Inc.
978-0-387-90093-3 (ISBN)
“The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other “modern” textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher.” Zentralblatt für Mathematik
I. Spaces.- 1. Fields.- 2. Vector spaces.- 3. Examples.- 4. Comments.- 5. Linear dependence.- 6. Linear combinations.- 7. Bases.- 8. Dimension.- 9. Isomorphism.- 10. Subspaces.- 11. Calculus of subspaces.- 12. Dimension of a subspace.- 13. Dual spaces.- 14. Brackets.- 15. Dual bases.- 16. Reflexivity.- 17. Annihilators.- 18. Direct sums.- 19. Dimension of a direct sum.- 20. Dual of a direct sum.- 21. Quotient spaces.- 22. Dimension of a quotient space.- 23. Bilinear forms.- 24. Tensor products.- 25. Product bases.- 26. Permutations.- 27. Cycles.- 28. Parity.- 29. Multilinear forms.- 30. Alternating forms.- 31. Alternating forms of maximal degree.- II. Transformations.- 32. Linear transformations.- 33. Transformations as vectors.- 34. Products.- 35. Polynomials.- 36. Inverses.- 37. Matrices.- 38. Matrices of transformations.- 39. Invariance.- 40. Reducibility.- 41. Projections.- 42. Combinations of pro¬jections.- 43. Projections and invariance.- 44. Adjoints.- 45. Adjoints of projections.- 46. Change of basis.- 47. Similarity.- 48. Quotient transformations.- 49. Range and null-space.- 50. Rank and nullity.- 51. Transformations of rank one.- 52. Tensor products of transformations.- 53. Determinants.- 54. Proper values.- 55. Multiplicity.- 56. Triangular form.- 57. Nilpotence.- 58. Jordan form.- III. Orthogonality.- 59. Inner products.- 60. Complex inner products.- 61. Inner product spaces.- 62. Orthogonality.- 63. Completeness.- 64. Schwarz’s inequality.- 65. Complete orthonormal sets.- 66. Projection theorem.- 67. Linear functionals.- 68. Parentheses versus brackets.- 69. Natural isomorphisms.- 70. Self-adjoint transformations.- 71. Polarization.- 72. Positive transformations.- 73. Isometries.- 74. Change of orthonormal basis.- 75. Perpendicular projections.- 76. Combinations of perpendicular projections.- 77. Complexification.- 78. Characterization of spectra.- 79. Spectral theorem.- 80. Normal transformations.- 81. Orthogonal transformations.- 82. Functions of transformations.- 83. Polar decomposition.- 84. Commutativity.- 85. Self-adjoint transformations of rank one.- IV. Analysis.- 86. Convergence of vectors.- 87. Norm.- 88. Expressions for the norm.- 89. Bounds of a self-adjoint transformation.- 90. Minimax principle.- 91. Convergence of linear transformations.- 92. Ergodic theorem.- 93. Power series.- Appendix. Hilbert Space.- Recommended Reading.- Index of Terms.- Index of Symbols.
Reihe/Serie | Undergraduate Texts in Mathematics |
---|---|
Zusatzinfo | VIII, 202 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
ISBN-10 | 0-387-90093-4 / 0387900934 |
ISBN-13 | 978-0-387-90093-3 / 9780387900933 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich