Global Aspects of Classical Integrable Systems - Richard H. Cushman, Larry M. Bates

Global Aspects of Classical Integrable Systems

Buch | Hardcover
XVI, 435 Seiten
1997 | 1997. Auflage
Springer Basel (Verlag)
978-3-7643-5485-5 (ISBN)
96,29 inkl. MwSt
  • Titel gebraucht verfügbar
  • Artikel merken
Studibuch Logo

...gebraucht verfügbar!

This book gives a complete global geometric description of the motion of the two di mensional hannonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in almost every physics book on classical mechanics. So why is this book necessary? The answer is that the standard treatments are not complete. For instance in physics books one cannot see the monodromy in the spherical pendulum from its explicit solution in terms of elliptic functions nor can one read off from the explicit solution the fact that a tennis racket makes a near half twist when it is tossed so as to spin nearly about its intermediate axis. Modem mathematics books on mechanics do not use the symplectic geometric tools they develop to treat the qualitative features of these problems either. One reason for this is that their basic tool for removing symmetries of Hamiltonian systems, called regular reduction, is not general enough to handle removal of the symmetries which occur in the spherical pendulum or in the Lagrange top. For these symmetries one needs singular reduction. Another reason is that the obstructions to making local action angle coordinates global such as monodromy were not known when these works were written.

I. The harmonic oscillator.- 1. Hamilton's equations and Sl symmetry.- 2. S1 energy momentum mapping.- 3. U(2) momentum mapping.- 4. The Hopf fibration.- 5. Invariant theory and reduction.- 6. Exercises.- II. Geodesics on S3.- 1. The geodesic and Delaunay vector fields.- 2. The SO(4) momentum mapping.- 3. The Kepler problem.- 3.1 The Kepler vector field.- 3.2 The so(4) momentum map.- 3.3 Kepler's equation.- 3.4 Regularization of the Kepler vector field.- 4. Exercises.- III The Euler top.- 1. Facts about SO(3).- 1.1 The standard model.- 1.2 The exponential map.- 1.3 The solid ball model.- 1.4 The sphere bundle model.- 2. Left invariant geodesics.- 2.1 Euler-Arnol'd equations on SO(3).- 2.2 Euler-Arnol'd equations on T1S2 × R3.- 3. Symmetry and reduction.- 3.1 Construction of the reduced phase space.- 3.2 Geometry of the reduction map.- 3.3 Euler's equations.- 4. Qualitative behavior of the reduced system.- 5. Analysis of the energy momentum map.- 6. Integration of the Euler-Arnol'd equations.- 7. The rotation number.- 7.1 An analytic formula.- 7.2 Poinsot's construction.- 8. A twisting phenomenon.- 9. Exercises.- IV. The spherical pendulum.- 1. Liouville integrability.- 2. Reduction of the Sl symmetry.- 3. The energy momentum mapping.- 4. Rotation number and first return time.- 5. Monodromy.- 6. Exercises.- V. The Lagrange top.- 1. The basic model.- 2. Liouville integrability.- 3. Reduction of the right Sl action.- 3.1 Reduction to the Euler-Poisson equations.- 3.2 The magnetic spherical pendulum.- 4. Reduction of the left S1 action.- 5. The Poisson structure.- 6. The Euler-Poisson equations.- 6.1 The Poisson structure.- 6.2 The energy momentum mapping.- 6.3 Motion of the tip of the figure axis.- 7. The energy momemtum mapping.- 7.1 Topology of ???1(h,a,b) and H?1(h).- 7.2 The discriminant locus.- 7.3 The period lattice and monodromy.- 8. The Hamiltonian Hopf bifurcation.- 8.1 The linear case.- 8.2 The nonlinear case.- 9. Exercises.- Appendix A. Fundamental concepts.- 1. Symplectic linear algebra.- 2. Symplectic manifolds.- 3. Hamilton's equations.- 4. Poisson algebras and manifolds.- 5. Exercises.- Appendix B. Systems with symmetry.- 1. Smooth group actions.- 2. Orbit spaces.- 2.1 Orbit space of a proper action.- 2.2 Orbit space of a free action.- 2.3 Orbit space of a locally free action.- 3. Momentum mappings.- 3.1 General properties.- 3.2 Normal form.- 4. Reduction: the regular case.- 5. Reduction: the singular case.- 6. Exercises.- Appendix C. Ehresmann connections.- 1. Basic properties.- 2. The Ehresmann theorems.- 3. Exercises.- Appendix D. Action angle coordinates.- 1. Local action angle coordinates.- 2. Monodromy.- 3. Exercises.- Appendix E. Basic Morse theory.- 1. Preliminaries.- 2. The Morse lemma.- 3. The Morse isotopy lemma.- 4. Exercises.- Notes.- References.- Acknowledgements.

Sprache englisch
Maße 155 x 235 mm
Gewicht 948 g
Einbandart gebunden
Themenwelt Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Schlagworte Algebra • Analysis • classical mechanics • hamiltonian mechanics • manifold • Mechanik • pendulum
ISBN-10 3-7643-5485-2 / 3764354852
ISBN-13 978-3-7643-5485-5 / 9783764354855
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich