The Statistical Mechanics of Quantum Lattice Systems - Sergio Albeverio, Yuri Kondratiev, Yuri Kozitsky, Michael Röckner

The Statistical Mechanics of Quantum Lattice Systems

A Path Integral Approach
Buch
XIII, 379 Seiten
2009 | 1., Aufl.
EMS Press (Verlag)
978-3-03719-070-8 (ISBN)
69,00 inkl. MwSt
Quantum statistical mechanics plays a major role in many fields such as, for instance, thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization.

This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice.

The text is addressed to both mathematicians and physicists, especially those who are concerned with the rigorous mathematical background of their results and the kind of problems that arise in quantum statistical mechanics. The reader will find here a concise collection of facts, concepts, and tools relevant for the application of path integrals and other methods based on measure and integration theory to problems of quantum physics, in particular the latest results in the mathematical theory of quantum anharmonic crystals. The methods developed in the book are also applicable to other problems involving infinitely many variables, for example, in biology and economics.
Erscheint lt. Verlag 8.7.2009
Reihe/Serie EMS Tracts in Mathematics ; 8
Sprache englisch
Maße 170 x 240 mm
Gewicht 906 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie Mechanik
Schlagworte algebra of observables • algebra of observables, Euclidean Gibbs measure, phasetransition, quantum effect • algebra of observables, Euclidean Gibbs measure, phasetransition, quantum effect, decay of correlations, critical point • Euclidean Gibbs measure • Gibbs random field, Dobruchin-Lanford-Ruelle approach • Gibbs random field, Dobruchin-Lanford-Ruelle approach; quantumoscillator, Schröd • Gibbs random field, Dobruchin-Lanford-Ruelle approach; quantumoscillator, Schrödinger operator, KMS state, Green function, • Hardcover, Softcover / Mathematik/Analysis • Mathematik • phase transition • quantum effect, decay of correlations, critical point • quantumoscillator, Schrödinger operator, KMS state, Green function,
ISBN-10 3-03719-070-1 / 3037190701
ISBN-13 978-3-03719-070-8 / 9783037190708
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99