Differential Geometrical Methods in Mathematical Physics II
Springer Berlin (Verlag)
978-3-540-08935-3 (ISBN)
On the role of field theories in our physical conception of geometry.- Characteristic classes and solutions of gauge theories.- Classification of classical yang-mills fields.- Bundle representations and their applications.- to gauge theory.- The use of exterior forms in field theory.- Electromagnetic fields on manifolds: Betti numbers, monopoles and strings, minimal coupling.- Gravity is the gauge theory of the parallel - transport modification of the poincare group.- On the lifting of structure groups.- On the non-uniqueness of spin structure in superconductivity.- Conformal invariance in field theory.- Geometric quantization and the WKB approximation.- Some properties of half-forms.- On some approach to geometric quantization.- Representations associated to minimal co-adjoint orrits.- On the Schrödinger equation given by geometric quantisation.- Application of geometric quantization in quantum mechanics.- Thermodynamique et Geometrie.- Some preliminary remarks on the formal variational calculus of gel'fand and dikii.- Reducibility of the symplectic structure of minimal interactions.- Ambiguities in canonical transformations of classical systems and the spectra of quantum observables.- Quantum field theory in curved space-times a general mathematical framework.- On functional integrals in curved spacetime.- Observables for quantum fields on curved background.- Quantization of fields on a curved background.- Supergravity.- Representations of classical lie superalgebras.
Erscheint lt. Verlag | 1.9.1978 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VI, 626 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 880 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Algebra • Calculus • Equation • Function • Gauge Theory • Geometry • manifold • Mathematical Physics |
ISBN-10 | 3-540-08935-7 / 3540089357 |
ISBN-13 | 978-3-540-08935-3 / 9783540089353 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich