Differential Geometrical Methods in Mathematical Physics
Springer Berlin (Verlag)
978-3-540-10275-5 (ISBN)
Configuration spaces of identical particles.- The geometrical meaning and globalization of the Hamilton-Jacobi method.- The Euler-Lagrange resolution.- On the prequantum description of spinning particles in an external gauge field.- Classical action, the wu-yang phase factor and prequantization.- Groupes differentiels.- Representations that remain irreducible on parabolic subgroups.- Non-positive polarizations and half-forms.- Connections on symplectic manifolds and geometric quantization.- Geometric aspects of the feynman integral.- Relativistic quantum theory in complex spacetime.- Existence et equivalence de deformations associatives associees a une variete symplectique.- A new symplectic structure of field theory.- Conformal structures and connections.- Equilibrium configurations of fluids in general relativity.- Quaternionic and supersymmetric ? - models.- Supergravity as the gauge theory of supersymmetry.- Hypergravities.- Preface.- Preface.- Morse theory and the yang-mills equations.- Reduction of the yang mills equations.- Tangent structure of Yang-Mills equations and hodge theory.- Classification of gauge fields and group representations.- Gauge asthenodynamics (SU(2/1)) (classical discussion).- Spinors on fibre bundles and their use in invariant models.- Glueing broken symmetries together.- Deformations and quantization.- Stability theory and quantization.- Presymplectic manifolds and the quantization of relativistic particle systems.- Geometric quantisation for singular lagrangians.- Electron scattering on magnetic monopoles.- The metaplectic representation, weyl operators and spectral theory.- Supergravity: A unique self-interacting theory.- General relativity as a gauge theory.- On a purely affine formulation of general relativity.- A fibre bundledescription of coupled gravitational and gauge fields.- Homogenous symplectic formulation of field dynamics and the poincaré-cartan form.- Spectral sequences and the inverse problem of the calculus of variations.- Geodesic fields in the calculus of variations of multiple integrals depending on derivatives of higher order.- Separability structures on riemannian manifolds.
Erscheint lt. Verlag | 1.12.1980 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XIV, 542 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 830 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie | |
Schlagworte | Calculus • Differentialgeometrie • Gauge Theory • manifold • Mathematical Physics • Mathematische Physik • Operator • Physics |
ISBN-10 | 3-540-10275-2 / 3540102752 |
ISBN-13 | 978-3-540-10275-5 / 9783540102755 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich