Advances in Solar Energy
Kluwer Academic / Plenum Publishers (Verlag)
978-0-306-42064-1 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Spencer and Richard Perez 1.1 Abstract 1 1.2 Characteristics of Pyranometers ...2 1.3 General Features of a Pyranometer ...3 1.3.1 Instrument Sensitivity 4 1.3.2 Response with Time 4 1.3.3 Sensitivity 4 1.3.4 Responsivity ...
1 The Measurement of Solar Radiation.- 1.1 Abstract.- 1.2 Characteristics of Pyranometers.- 1.3 General Features of a Pyranometer.- 1.3.1 Instrument Sensitivity.- 1.3.2 Response with Time.- 1.3.3 Sensitivity.- 1.3.4 Responsivity.- 1.3.5 Temperature Coefficient of Sensitivity.- 1.3.6 Thermal Transient Response.- 1.3.7 Linearity.- 1.3.8 Angular Dependence of Sensitivity.- 1.3.9 Leveling.- 1.3.10 Spectral Response.- 1.3.11 Stability.- 1.3.12 Pyranometer Sensitivity Function.- 1.4 Pyranometers.- 1.4.1 Clear-Sky Analysis.- 1.4.2 Installation of the Instrument.- 1.4.3 Thermopile Construction.- 1.4.4 Moisture.- 1.4.5 Deposition.- 1.4.6 Negative Values.- 1.4.7 Readings Which Exceed the Values for Extraterrestrial Insolation.- 1.4.8 Diffuse Solar Radiation.- 1.4.9 Shadowband Orientation.- 1.5 Pyrheliometers.- 1.5.1 Calibration.- 1.5.2 Temperature Correction.- 1.5.3 Spectral Measurements Using Broadband Filters.- 1.5.4 Time Constant of the Pyrheliometer.- 1.5.5 Tracking.- 1.5.6 Importance of the Solar Aureole.- 1.5.7 Pyrheliometer Tracker Wiring.- 1.5.8 Quality Control of Data.- 1.5.9 Solar Radiation Instruments.- 1.5.9.1 The Pyrheliometers.- 1.5.9.2 The Pyranometers.- 1.5.9.3 Duration of Sunshine Instruments.- Appendix 1.1 Historical Perspectives.- 1.1.1 Historical Perspectives-From Sundials to Satellites.- References.- 2 Environmental Requirements for Anaerobic Digestion of Biomass.- 2.1 Abstract.- 2.2 Introduction.- 2.3 Microbiology of Methanogens.- 2.3.1 Interspecies H2 Transfer.- 2.3.2 Methanogenic Reactions.- 2.3.3 Characteristics of Methanogenic Species in Pure Culture.- 2.3.4 Methanothrix Soehngenii.- 2.3.5 Biochemical Mechanisms and Pathways.- 2.3.6 Predominance of Species.- 2.3.7 Fermentative Bacteria.- 2.4 Nutrient Requirements.- 2.4.1 Nitrogen.- 2.4.2 Phosphorus.- 2.4.3 Sulfur.- 2.4.4 Trace Metals.- 2.5 Toxicity Response.- 2.5.1 Acclimation and Metabolism.- 2.5.2 Microbial Kinetics and Toxicity.- 2.5.3 Toxicity in Anaerobic Digestion Studies.- 2.6 Alkalinity.- 2.6.1 Alkalinity Concentration Required.- 2.6.2 Choice of Purchased Alkalinity.- 2.7 Modeling of the Anaerobic Digestion Process.- 2.7.1 Cellular Synthesis of Organic Substrate.- 2.7.2 Rate-Limiting Step in Anaerobic Digestion.- 2.7.2.1 Lipids and Acetate.- 2.7.2.2 Cellulose.- 2.7.3 Kinetics.- 2.7.4 Stoichiometry.- 2.7.5 Calculations of Methane Production.- 2.8 Design Prerequisites.- 2.8.1 Solids Concentration in Feed Sludge.- 2.8.2 Batch versus Continuous Feeding.- 2.8.3 Plug Flow versus CSTR.- 2.8.4 Temperature.- 2.8.5 Process Configuration.- 2.8.6 Soluble versus Sludge Feedstocks.- 2.8.7 Industrial Wastewaters Treated by Methane Fermentation.- 2.8.8 Screening Studies.- 2.8.9 Scale-Up Factors Affecting Performance.- 2.9 Future Directions.- References.- 3 Principles and Technology of Biomass Gasification.- 3.1 Abstract.- 3.2 Introduction.- 3.2.1 History of Biomass Gasification.- 3.2.2 Major References on Biomass Gasification.- 3.2.3 Gasification Research Centers.- 3.2.4 Gasification Meetings.- 3.3 Gasifier Technology.- 3.3.1 Types of Gasifiers.- 3.3.1.1 Charcoal Gasifiers.- 3.3.1.2 Updraft Gasifiers.- 3.3.1.3 Downdraft Gasifiers.- 3.3.1.4 Fluidized Bed Gasifiers.- 3.3.1.5 Suspension Gasifiers.- 3.3.1.6 Other Gasifiers.- 3.3.2 Gasifier Systems.- 3.3.3 Gasifier System Specifications.- 3.3.4 Producer Gas Use and Gas Conditioning.- 3.4 Principles of Gasification.- 3.4.1 Gasifier Fuels.- 3.4.2 Biomass versus Coal Gasification.- 3.4.3 Chemistry of Biomass Gasification.- 3.4.4 Global Thermodynamics of Biomass Gasification.- 3.4.5 The Gasification Reactions.- 3.4.5.1 Solid and Gas Pyrolysis.- 3.4.5.2 Kinetics of Solid Pyrolysis Reactions.- 3.4.5.3 Kinetics of Biomass Vapor Pyrolysis Reactions.- 3.4.5.4 Mechanisms of Charcoal Gasification.- 3.4.5.5 Kinetics of Charcoal Gasification.- 3.4.6 Modeling of Gasifier Operation.- 3.4.6.1 Updraft Gasifier Modeling.- 3.4.6.2 Downdraft Gasifier Modeling.- 3.4.6.3 Fluidized Bed Gasifier Modeling.- 3.4.6.4 Fast Pyrolysis Modeling.- 3.5 Conclusions.- 3.6 Acknowledgments.- Appendix 3.1 Units.- References.- 4 Biomass Pyrolysis: A Review of the Literature Part 2-Lignocellulose Pyrolysis.- 4.1 Abstract.- 4.2 Introduction.- 4.2.1 Scope.- 4.2.2 Goals.- 4.3 Pyrolysis of Carbohydrates.- 4.3.1 Low Temperature Phenomena.- 4.3.1.1 Products.- 4.3.1.2 Mechanisms and Kinetics.- 4.3.2 Moderate Temperature Phenomena.- 4.3.2.1 Products.- 4.3.2.2 Mechanisms and Kinetics.- 4.3.3 High Temperature Phenomena.- 4.3.3.1 Products.- 4.3.3.2 Mechanisms and Kinetics.- 4.3.4 Effects of Various Parameters.- 4.3.5 Summary and Critique.- 4.4 Pyrolysis of Lignin.- 4.4.1 Low Temperature Phenomena.- 4.4.2 Moderate Temperature Phenomena.- 4.4.2.1 Products.- 4.4.2.2 Mechanisms and Kinetics.- 4.4.3 High Temperature Phenomena.- 4.4.3.1 Products.- 4.4.3.2 Mechanisms and Kinetics.- 4.4.4 Effects of Various Parameters.- 4.4.4.1 Heating Rate.- 4.4.4.2 Pressure.- 4.4.4.3 Particle Size.- 4.4.4.4 Additives.- 4.4.4.5 Pyrolysis Medium.- 4.4.5 Summary and Critique.- 4.5 Pyrolysis of Lignocellulosic Materials.- 4.5.1 Low Temperature Phenomena.- 4.5.2 Moderate Temperature Phenomena.- 4.5.2.1 Products.- 4.5.2.2 Mechanisms and Kinetics.- 4.5.3 High Temperature Phenomena.- 4.5.3.1 Products.- 4.5.3.2 Mechanisms and Kinetics.- 4.5.4 Effects of Various Parameters.- 4.5.4.1 Heating Rate.- 4.5.4.2 Pressure.- 4.5.4.3 Particle Size.- 4.5.4.4 Gaseous Environment.- 4.5.4.5 Mineral Matter and Additives.- 4.5.5 Summary and Critique.- 4.6 Commercial Development.- 4.6.1 Generic Technologies.- 4.6.2 Generic Economics.- 4.6.3 State of the Art Reactors.- 4.6.3.1 Class I Reactors.- 4.6.3.2 Class II Reactors.- 4.6.3.3 Class III Reactors.- 4.6.3.4 Summary and Critique.- 4.7 Conclusions.- 4.8 Acknowledgments.- 4.9 Notation.- References.- 5 Thermal Comfort and Passive Design.- 5.1 Historical Notes.- 5.2 Physiological Basis.- 5.3 Summary.- 5.4 Empirical Studies.- 5.5 Analytical Work.- 5.6 The Bioclimatic Chart.- 5.7 Variability of Comfort.- 5.8 Psychological Extensions.- 5.9 Consequences.- 5.10 Behavioral and Clothing Differences.- 5.11 Acclimatization and Habit.- 5.12 Passive Heating Systems and Comfort.- 5.13 Summary.- 5.14 References.- 6 Earth Contact Buildings: Applications, Thermal Analysis and Energy Benefits.- 6.1 Abstract.- 6.2 Earth Contact Structures and Their Applicability.- 6.3 The General Advantages of Earth Contact Structures.- 6.3.1 Visual Impact /Aesthetics.- 6.3.2 Preservation of Surface Open Space.- 6.3.3 Land-Use Benefits.- 6.3.4 Environmental Benefits.- 6.3.5 Noise and Vibration.- 6.3.6 Maintenance.- 6.3.7 Fire Protection.- 6.3.8 Protection from Earthquakes.- 6.3.9 Suitability for Civil Defense.- 6.3.10 Storm and Tornado Protection.- 6.3.11 Security.- 6.3.12 Life Cycle Costs.- 6.4 Potential Benefits Related to Energy Conservation.- 6.4.1 Infiltration.- 6.4.2 Heat Loss.- 6.4.3 Cooling.- 6.4.4 Heat Gain.- 6.4.5 Daily Temperature Fluctuations.- 6.4.6 Seasonal Temperature Lag in Ground.- 6.5 Potential Limitations Related to Energy Conservation.- 6.5.1 Structural and Economic Limitations.- 6.5.2 Requirements for Openings.- 6.5.3 Slow Response.- 6.5.4 Ground Temperatures.- 6.5.5 Drawbacks of Seasonal Time Lag in Temperatures.- 6.5.6 Heating/Cooling Compromises.- 6.5.7 Condensation.- 6.5.8 Evapotranspiration.- 6.5.9 Indoor Air Quality.- 6.6 Application of Earth Contact Systems.- 6.6.1 Residential Structures.- 6.6.2 Nonresidential Structures.- 6.6.3 Clusters of Buildings Employing Earth Contact.- 6.6.4 Improved Exploitation of Earth Contact Potential.- 6.7 Thermal Analysis of Earth Contact Buildings.- 6.8 Examples of Current Earth Contact Analysis.- 6.8.1 Manual Methods.- 6.8.2 "Old ASHRAE" Method.- 6.8.3 Method of Elliot and Baker.- 6.8.4 Method of Boileau and Latta.- 6.8.5 Method of Wang.- 6.8.6 Method of Mitalas.- 6.8.7 F Factor Method.- 6.9 Investigations Using Computer Techniques.- 6.10 Example of a Detailed Computer Analysis.- 6.11 Future Research.- 6.11.1 Comprehensive, Integrated Energy Analysis.- 6.11.2 Analytical Models.- 6.11.3 Measurements of Earth Contact Heat Transfer.- 6.11.4 Earth Contact Configurations.- 6.12 Energy Performance Analysis for Components of Small Earth Contact Structures.- 6.13 General Description of Parametric Studies.- 6.14 Results and Highlights of Parametric Studies.- 6.14.1 Tucson, Arizona.- 6.14.1.1 Above Grade Cases.- 6.14.1.2 Fully Bermed Case.- 6.14.1.3 Earth Covered Case.- 6.14.1.4 Ground Surface Modifications.- 6.14.1.5 Two Story Case.- 6.14.1.6 Monthly Distribution.- 6.14.2 Columbus, Ohio.- 6.14.2.1 Above Grade Cases.- 6.14.2.2 Fully Bermed Case.- 6.14.2.3 Earth Covered Case with a Typical Wall Insulation.- 6.14.2.4 Earth Covered Case with Extended Roof Insulation.- 6.14.2.5 Two Story Earth Covered Case.- 6.14.3 Minneapolis, Minnesota.- 6.14.3.1 Above Grade Cases.- 6.14.3.2 Fully Bermed Case.- 6.14.3.3 Earth Covered Case.- 6.14.3.4 Earth Covered Case with Floor Insulation.- 6.14.3.5 Earth Covered Case with Extended Roof Insulation.- 6.14.3.6 Two Story Case.- 6.15 Limitations of Parametric Studies.- 6.16 Preliminary Conclusions.- 6.16.1 Building Configuration Considerations.- 6.16.2 Interior Surface Considerations.- 6.17 References.- 7 Testing Solar Collectors.- 7.1 Abstract.- 7.2 Introduction.- 7.3 Basic Equations Governing the Thermal Performance of Solar Collectors.- 7.3.1 Thermal Efficiency.- 7.3.2 Time Constant.- 7.3.3 Incident Angle Modifier.- 7.4 Testing Solar Collectors under Clear-Sky, Full-Irradiance Conditions.- 7.4.1 ASHRAE Standards.- 7.4.1.1 Time Constant Test.- 7.4.1.2 Thermal Efficiency Test.- 7.4.1.3 Incident Angle Modifier Test.- 7.4.1.4 Instrumentation.- 7.4.2 Shortcomings of the Assumed Collector Model.- 7.4.3 Comparability of Results from Outdoor Tests.- 7.4.4 Testing Concentrating Collectors.- 7.5 Testing Solar Collectors under Zero-Irradiance Conditions.- 7.6 Considerations in Testing Air Collectors.- 7.6.1 Air Leakage.- 7.6.2 Predicting Collector Array Performance from Tests on Modules.- 7.7 Calculating All-Day Collector Performance.- 7.7.1 Calculation Including Diffuse Solar Irradiance.- 7.7.2 SRCC Rating Calculation Methods.- 7.7.3 Effects of Diffuse Irradiance on Calculations.- 7.8 Nomenclature.- References.- 8 Concentrating Solar Collectors.- 8.1 Abstract.- 8.2 Introduction.- 8.3 Nontracking Concentrators.- 8.3.1 Compound Parabolic Concentrators.- 8.3.2 Reflectors for Evacuated Tubes.- 8.3.3 V-Troughs.- 8.3.4 Side Reflectors.- 8.4 Tracking Concentrators.- 8.4.1 Image Spread Due to Finite Width of the Sun and Optical Errors.- 8.4.2 Parabolic Reflectors.- 8.4.3 Fresnel Reflectors.- 8.4.4 Fresnel Lenses.- 8.4.5 Fixed Reflectors with Tracking Receivers.- 8.4.5.1 Spherical Reflectors.- 8.4.5.2 Circular Cylindrical Reflector with Tracking Receiver.- 8.4.5.3 Reflector Slats on Circular Cylindrical Mount.- 8.4.6 Concentrator Configurations for Low Cost Manufacture.- 8.4.7 Second-Stage Concentrators.- 8.5 Performance of Concentrating Collectors.- 8.5.1 Instantaneous Efficiency.- 8.5.2 Long-Term Average Performance.- 8.6 Practical Considerations.- 8.6.1 Absorber Coatings.- 8.6.2 Glazing.- 8.6.3 Reflector Materials.- 8.6.4 Other Materials.- 8.6.5 Collector Orientation.- 8.6.6 Cleaning.- 8.6.7 Tracking.- 8.7 Summary.- 8.8 References.
Zusatzinfo | 70 black & white illustrations, biography |
---|---|
Verlagsort | Dordrecht |
Sprache | englisch |
Gewicht | 1010 g |
Themenwelt | Medizin / Pharmazie ► Gesundheitsfachberufe ► Diätassistenz / Ernährungsberatung |
ISBN-10 | 0-306-42064-3 / 0306420643 |
ISBN-13 | 978-0-306-42064-1 / 9780306420641 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich