Ion Channel Regulation -

Ion Channel Regulation

Buch | Hardcover
318 Seiten
1999
Academic Press Inc (Verlag)
978-0-12-036133-5 (ISBN)
108,45 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Ion channels have been transformed during the past years into signaling proteins that regulate every aspect of cell physiology. This book provides an understanding of the molecular mechanisms that control ion channel activity. It also explains how channels are used to stimulate growth and changes to activity of the nucleus and genome.
Volume 33 reviews the current understanding of ion channel regulation by signal transduction pathways. Ion channels are no longer viewed simply as the voltage-gated resistors of biophysicists or the ligand-gated receptors of biochemists. They have been transformed during the past 20 years into signaling proteins that regulate every aspect of cell physiology. In addition to the voltage-gated channels, which provide the ionic currents to generate and spread neuronal activity, and the calcium ions to trigger synaptic transmission, hormonal secretion, and muscle contraction, new gene families of ion channel proteins regulate cell migration, cell cycle progression, apoptosis, and gene transcription, as well as electrical excitability. Even the genome of the lowly roundworm Caenorhabditis elegans encodes almost 100 distinct genes for potassium-selective channels alone. Most of these new channel proteins are insensitive to membrane potential, yet in humans, mutations in these genes disrupt development and increase individual susceptibility to debilitating and lethal diseases.How do cells regulate the activity of these channels? How might we restore their normal function? In Ion Channel Regulation, many of the experts who pioneered these discoveries provide detailed summaries of our current understanding of the molecular mechanisms that control ion channel activity.

Angus C. Nairn is currently Associate Professor at The Rockefeller University. He has published a large number of papers concerned with the structure and regulation of protein kinases and phosphatases involved in signal transduction, particularly with respect to signalling by calcium.

Overview:
I.B. Levitan, Modulation of Ion Channels by Protein Phosphorylation.
Protein Phosphorylation.
S. Rossie, Regulation of Voltage-Sensitive Sodium and Calcium Channels by Phosphorylation.
S.L. Swope, S.J. Moss, L.A. Raymond, and R.L. Huganir, Regulation of Ligand Gated Ion Channels by Protein Phosphorylation.
D.C. Gadsby and A.C. Nairn, Regulations of CFTR Cl- Ion Channels by Phosphorylation and Dephosphorylation.
Second Messengers:
M. Biel, X. Zong, and F. Hofmann, Cyclic Nucleotide-Gated Channels.
R.E. White, Cyclic GMP and Ion Channel Regulation.
Closely Associated Proteins:
S.R. Ikeda and K. Dunlap, Voltage-Dependent Modulation of N-Type Calcium Channels: Role of G Proteins Subunits.
Novel Pathways.
J.-L. Sui, K. Chan, M.-N. Langan, M. Vivaudou, and D.E. Logothetis, G Protein-Gated Potassium Channels.
A.C. Dolphin, L Type Calcium Channel Modulation by G Proteins.
Novel Pathways:
S.G. Rane, Ion Channels as Physiological Effectors for Growth Factor Receptor and Ras/ERK Signaling Pathways.
R.S. Lewis, Store-Operated Calcium Channels.
Subject Index.

Erscheint lt. Verlag 13.4.1999
Reihe/Serie Advances in Second Messenger and Phosphoprotein Research
Mitarbeit Herausgeber (Serie): Paul Greengard, Angus C. Nairn, Shirish Shenolikar
Verlagsort San Diego
Sprache englisch
Maße 152 x 229 mm
Gewicht 630 g
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Histologie / Embryologie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-12-036133-7 / 0120361337
ISBN-13 978-0-12-036133-5 / 9780120361335
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Zytologie, Histologie und mikroskopische Anatomie

von Ulrich Welsch; Wolfgang Kummer; Thomas Deller

Buch | Hardcover (2022)
Urban & Fischer in Elsevier (Verlag)
54,00