Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing -

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing (eBook)

eBook Download: PDF | EPUB
2024 | 1. Auflage
400 Seiten
Elsevier Science (Verlag)
978-0-443-14140-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
160,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis- Covers methodologies as well as experimental results and studies- Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
PDFPDF (Adobe DRM)
Größe: 7,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43