Bioinformatic and Statistical Analysis of Microbiome Data (eBook)

From Raw Sequences to Advanced Modeling with QIIME 2 and R

, (Autoren)

eBook Download: PDF
2023
XXVI, 703 Seiten
Springer International Publishing (Verlag)
978-3-031-21391-5 (ISBN)

Lese- und Medienproben

Bioinformatic and Statistical Analysis of Microbiome Data - Yinglin Xia, Jun Sun
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This unique book addresses the bioinformatic and statistical modelling and also the analysis of microbiome data using cutting-edge QIIME 2 and R software. It covers core analysis topics in both bioinformatics and statistics, which provides a complete workflow for  microbiome data analysis: from raw sequencing reads to community analysis and statistical hypothesis testing.  It includes real-world data from the authors' research and from the public domain, and discusses the implementation of QIIME 2 and R for data analysis step-by-step. The data as well as QIIME 2 and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter so that these new methods can be readily applied in their own research.

Bioinformatic and Statistical Analysis of Microbiome Data is an ideal book for advanced graduate students and researchers in the clinical, biomedical, agricultural, and environmental fields, as well as those studying bioinformatics, statistics, and big data analysis.



Dr. Yinglin Xia is a Research Professor in the Department of Medicine at the University of Illinois Chicago (UIC). He was a Research Assistant Professor in the Department of Biostatistics and Computational Biology at the University of Rochester (Rochester, NY) and Clinical Statistician in AbbVie (North Chicago, IL) before joining UIC as a Research Associate Professor in 2015. Dr. Xia has published more than 140 statistical methodology and research papers in peer-reviewed journals. He serves on the editorial board for several scientific journals including as an Associate Editor of Gut Microbes and has served as a reviewer for over 100 scientific journals. He  is the lead authors of Statistical Analysis of Microbiome Data with R (Springer Nature, 2018), which was the first statistics book in microbiome study,  Statistical Data Analysis of Microbiomes and Metabolomics(American Chemical Society, 2022) and An Integrated Analysis of Microbiomes and Metabolomics (American Chemical Society, 2022).

 

Dr. Jun Sun is a tenured Professor of Medicine at the University of Illinois Chicago. She is an elected fellow of the American Gastroenterological Association (AGA) and American Physiological Society (APS). She chairs the AGA Microbiome and Microbial Therapy section.

She is an internationally recognized expert on microbiome and human diseases, such as vitamin D receptor in inflammation, dysbiosis and intestinal dysfunction in amyotrophic lateral sclerosis (ALS). Her lab is the first to discover chronic effects and molecular mechanisms of Salmonella infection and development of colon cancer. Dr. Sun has published over 210 scientific articles in peer-reviewed journals and 8 books on microbiome. She is on the editorial boards of more than 10 peer-reviewed international scientific journals, including a Deputy Editor for American Journal of Physiology-GIL, an Associate Editor for Gut Microbes. She serves on the study sections for the national and international research foundations. 


Erscheint lt. Verlag 15.5.2023
Zusatzinfo XXVI, 703 p. 75 illus., 59 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Medizin / Pharmazie Allgemeines / Lexika
Naturwissenschaften Biologie
Schlagworte Alpha Diversity biostatistics • Beta Diversity biostatistics • Bioinformatic Analysis Metagenomics • Bioinformatic Next-Generation Sequencing • Bioinformatics • Bioinformatics Linux • Bioinformatics Unix • Biostatistics • Compositional Analysis Microbiome Data • Data analysis microbiome • Differential Abundance Analysis microbiome • Longitudinal Data Analysis Microbiome • Meta-analysis Microbiome Data • microbiome • microbiome bioinformatics • microbiome biostatistics • r bioinformatics • r biostatistics • RStudio bioinformatics • RStudio biostatistics
ISBN-10 3-031-21391-2 / 3031213912
ISBN-13 978-3-031-21391-5 / 9783031213915
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
39,92