Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Current Applications of Deep Learning in Cancer Diagnostics -

Current Applications of Deep Learning in Cancer Diagnostics

Buch | Hardcover
167 Seiten
2023
CRC Press (Verlag)
978-1-032-23385-7 (ISBN)
93,50 inkl. MwSt
This book demonstrates the core concepts of deep learning algorithms that, using diagrams, data tables, and examples, are especially useful for deep learning based human cancer diagnostics.
This book examines deep learning-based approaches in the field of cancer diagnostics, as well as pre-processing techniques, which are essential to cancer diagnostics. Topics include introduction to current applications of deep learning in cancer diagnostics, pre-processing of cancer data using deep learning, review of deep learning techniques in oncology, overview of advanced deep learning techniques in cancer diagnostics, prediction of cancer susceptibility using deep learning techniques, prediction of cancer reoccurrence using deep learning techniques, deep learning techniques to predict the grading of human cancer, different human cancer detection using deep learning techniques, prediction of cancer survival using deep learning techniques, complexity in the use of deep learning in cancer diagnostics, and challenges and future scopes of deep learning techniques in oncology.

Jyotismita Chaki, PhD, is an Associate Professor at School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India. Aysegul Ucar, PhD, is a Professor in Department of Mechatronics Engineering, Firat University, Turkey.

1. Contemporary Trends in the Early Detection and Diagnosis of Human Cancers Using Deep Learning Techniques, 2. Cancer Data Pre-Processing Techniques, 3. A Survey on Deep Learning Techniques for Breast, Leukemia and Cervical Cancer Prediction, 4. An Optimized Deep Learning Technique for Detecting Lung Cancer from CT Images, 5. Brain Tumor Segmentation Utilizing MRI Multimodal Images with Deep Learning, 6. Detection and Classification of Brain Tumors Using Light-Weight Convolutional Neural Network, 7. Parallel Dense Skip Connected CNN Approach for Brain Tumor Classification, 8. Liver Tumor Segmentation Using Deep Learning Neural Networks, 9. Deep Learning Algorithms for Classification and Prediction of Acute Lymphoblastic Leukemia, 10. Cervical Pap Smear Screening and Cancer Detection Using Deep Neural Network, 11. Cancer Detection Using Deep Neural Network: Differentiation of Squamous Carcinoma Cells in Oral Pathology, 12. Challenges and Future Scopes in Current Applications of Deep Learning in Human Cancer Diagnostics

Erscheinungsdatum
Zusatzinfo 19 Tables, black and white; 16 Line drawings, color; 28 Line drawings, black and white; 14 Halftones, color; 21 Halftones, black and white; 27 Illustrations, color; 52 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 440 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-032-23385-0 / 1032233850
ISBN-13 978-1-032-23385-7 / 9781032233857
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00