Mechanical Design of Piezoelectric Energy Harvesters
Academic Press Inc (Verlag)
978-0-12-823364-1 (ISBN)
This book presents force-amplification compliant mechanism design and force direction-transmission mechanism design. It explores new mechanism design approaches using piezoelectric materials and permanent magnets. Readers can expect to learn how to design new mechanisms to realize multidimensional energy harvesting systems.
Dr. Qingsong Xu is a Professor in the Department of Electromechanical Engineering at the Faculty of Science and Technology, University of Macau, and has served as the Director of the Smart and Micro/Nano Systems Laboratory since 2010. His research focuses on intelligent micro/nanosystems, precision robotics, and biomedical applications. He currently serves as an Associate Editor for IEEE Transactions on Robotics (T-RO). Previously, he was a Technical Editor for IEEE/ASME Transactions on Mechatronics (T-MECH) and an Associate Editor for both IEEE Transactions on Automation Science and Engineering (T-ASE) and IEEE Robotics and Automation Letters (RA-L). Prof. Xu has received more than ten best paper awards from international conferences and multiple Macao Science and Technology Awards from Macao SAR, China. Since 2019, he has been recognized among the top 2% of the world's scientists by Stanford University. He is also a Fellow of ASME. Prof. Lap Mou TAM has been working in the area of heat transfer, energy systems, and chaos for 30 years. He has published over 100 peer-reviewed papers in journals and conferences in related domains.
1. Introduction
2. Energy Harvesting Materials and Circuits
3. Survey on Mechanical Designs of Piezoelectric Energy Harvester
4. Review of Energy Harvesting from Human Walking
5. Design of a New Piezoelectric Energy Harvester Based on Compound Two-Stage Force Amplification Frame
6. Design of a New Piezoelectric Energy Harvesting Handrail with Vibration and Force Excitations
7. Design of a Novel Piezoelectric Energy Harvester Based on Integrated Multi-Stage Force Amplification Frame
8. Design and Testing of a Novel Bidirectional Energy Harvester with Single Piezoelectric Stack
9. Design and Testing of a Novel 2-D Energy Harvester with Single Piezoelectric Stack
10. Design of a Novel 2-D Piezoelectric Energy Harvester with Permanent Magnets and Multi-Stage Force Amplifier
11. Design and Testing of a New Dual-Axial Underfloor Piezoelectric Energy Harvester
12. Design, Fabrication and Testing of a Novel 3-D Energy Harvester
13. Conclusions
Erscheinungsdatum | 02.11.2021 |
---|---|
Zusatzinfo | Approx. 100 illustrations (100 in full color); Illustrations |
Verlagsort | San Diego |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 410 g |
Themenwelt | Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Medizintechnik | |
ISBN-10 | 0-12-823364-8 / 0128233648 |
ISBN-13 | 978-0-12-823364-1 / 9780128233641 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich