Identification of Nonlinear Physiological Systems - David T. Westwick, Robert E. Kearney

Identification of Nonlinear Physiological Systems

Buch | Hardcover
280 Seiten
2003
Wiley-IEEE Press (Verlag)
978-0-471-27456-8 (ISBN)
190,41 inkl. MwSt
This much-needed reference informs readers about an important area of bioengineering, covering linear system identification and nonlinear systems needed to describe physiological processes. * Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date.
Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date.
* Enables the reader to use a wide variety of nonlinear system identification techniques.
* Offers a thorough treatment of the underlying theory.
* Provides a MATLAB toolbox containing implementation of the latest identification methods together with an extensive set of problems using realistic data sets.

David T. Westwick is an assistant professor in the Department of Electrical and Computer Engineering at the University of Calgary. Robert E. Kearney is professor and Chair of the Department of Biomedical Engineering at McGill University. A recipient of the IEEE Millenium Medal, he is a Fellow of the IEEE and former President of the IEEE Engineering in Medicine and Biology Society.

Preface. 1. Introduction.

1.1 Signals.

1.2 Systems and Models.

1.3 System Modeling.

1.4 System Identification.

1.5 How Common are Nonlinear Systems?

2. Background.

2.1 Vectors and Matrices.

2.2 Gaussian Random Variables.

2.3 Correlation Functions.

2.4 Mean-Square Parameter Estimation.

2.5 Polynomials.

2.6 Notes and References.

2.7 Problems.

2.8 Computer Exercises.

3. Models of Linear Systems.

3.1 Linear Systems.

3.2 Nonparametric Models.

3.3 Parametric Models.

3.4 State-Space Models.

3.5 Notes and References.

3.6 Theoretical Problems.

3.7 Computer Exercises.

4. Models of Nonlinear Systems.

4.1 The Volterra Series.

4.2 The Wiener Series.

4.3 Simple Block Structures.

4.4 Parallel Cascades.

4.5 The Wiener-Bose Model.

4.6 Notes and References.

4.7 Theoretical Problems.

4.8 Computer Exercises.

5. Identification of Linear Systems.

5.1 Introduction.

5.2 Nonparametric Time-Domain Models.

5.3 Frequency Response Estimation.

5.4 Parametric Methods.

5.5 Notes and References.

5.6 Computer Exercises.

6. Correlation-Based Methods.

6.1 Methods for Functional Expansions.

6.2 Block Structured Models.

6.3 Problems.

6.4 Computer Exercises.

7. Explicit Least-Squares Methods.

7.1 Introduction.

7.2 The Orthogonal Algorithms.

7.3 Expansion Bases.

7.4 Principal Dynamic Modes.

7.5 Problems.

7.6 Computer Exercises.

8. Iterative Least-Squares Methods.

8.1 Optimization Methods.

8.2 Parallel Cascade Methods.

8.3 Application: Visual Processing in the Light Adapted Fly Retina.

8.4 Problems

8.5 Computer Exercises.

References.

Index.

IEEE Press Series in Biomedical Engineering. 

Erscheint lt. Verlag 19.9.2003
Reihe/Serie IEEE Press Series on Biomedical Engineering
Zusatzinfo Photos: 70 B&W, 0 Color
Sprache englisch
Maße 182 x 260 mm
Gewicht 700 g
Themenwelt Medizin / Pharmazie
Naturwissenschaften Biologie
Technik Elektrotechnik / Energietechnik
ISBN-10 0-471-27456-9 / 0471274569
ISBN-13 978-0-471-27456-8 / 9780471274568
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Erkennen wichtiger Arten an Straßen- und Parkbäumen

von Antje Lichtenauer; Thomas Kowol; Dirk Dujesiefken

Buch | Softcover (2022)
Haymarket Media (Verlag)
10,00

von David Sadava; Jürgen Markl; David M. Hillis …

Buch (2019)
Springer Spektrum (Verlag)
109,99