Explainable AI in Healthcare and Medicine
Springer International Publishing (Verlag)
978-3-030-53351-9 (ISBN)
Explainability and Interpretability: Keys to Deep Medicine.- Fast Similar Patient Retrieval from Large Scale Healthcare Data: A Deep Learning-based Binary Hashing Approach.- A Kernel to Exploit Informative Missingness in Multivariate Time Series from EHRs.- Machine learning discrimination of Parkinson's Disease stages from walk-er-mounted sensors data.- Personalized Dual-Hormone Control for Type 1 Diabetes Using Deep Rein-forcement Learning.- A Generalizable Method for Automated Quality Control of Functional Neuroimaging Datasets.- Uncertainty Characterization for Predictive Analytics with Clinical Time Series Data.- A Dynamic Deep Neural Network for Multimodal Clinical Data Analysis.- DeStress: Deep Learning for Unsupervised Identification of Mental Stress in Firefighters from Heart-rate Variability (HRV) Data.- A Deep Learning Approach for Classifying Nonalcoholic Steatohepatitis Pa-tients from Nonalcoholic Fatty Liver Disease Patients using Electronic Medical Records.
Erscheinungsdatum | 04.11.2020 |
---|---|
Reihe/Serie | Studies in Computational Intelligence |
Zusatzinfo | XXII, 344 p. 110 illus., 84 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 671 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik | |
Schlagworte | Big Data • Clinical Intelligence • Digital Medicine • Health Informatics • Health Intelligence • Medical Informatics • Precession Health • Precession Medicine • predictive analytics • Public Health Surveillance • W3PHIAI • W3PHIAI2020 |
ISBN-10 | 3-030-53351-4 / 3030533514 |
ISBN-13 | 978-3-030-53351-9 / 9783030533519 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich